A. | $\frac{π}{9}$ | B. | $\frac{{\sqrt{3}π}}{9}$ | C. | $\frac{{3\sqrt{3}}}{2}-\frac{2π}{3}$ | D. | $\frac{{3\sqrt{3}}}{2}-\frac{{\sqrt{3}π}}{2}$ |
分析 首先根據圓周角定理得出扇形半徑以及圓周角度數,進而利用銳角三角函數關系得出BC,AC的長,利用S△ABC-S扇形BOE=圖中陰影部分的面積求出即可.
解答 解:連接BD,BE,BO,EO,
∵B,E是半圓弧的三等分點,
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAC=∠EBA=30°,
∴BE∥AD,
∵弧BE的長為$\frac{2}{3}$π,
∴$\frac{60π×R}{180}$=$\frac{2}{3}$π,
解得:R=2,
∴AB=ADcos30°=2$\sqrt{3}$,
∴BC=$\frac{1}{2}$AB=$\sqrt{3}$,
∴AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=3,
∴S△ABC=$\frac{1}{2}$×BC×AC=$\frac{1}{2}$×$\sqrt{3}$×3=$\frac{3\sqrt{3}}{2}$,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面積相等,
∴圖中陰影部分的面積為:S△ABC-S扇形BOE=$\frac{3\sqrt{3}}{2}$-$\frac{60π×{2}^{2}}{360}$=$\frac{3\sqrt{3}}{2}$-$\frac{2}{3}$π.
故選:C.
點評 此題主要考查了扇形的面積計算以及三角形面積求法等知識,根據已知得出△BOE和△ABE面積相等是解題關鍵.
科目:初中數學 來源: 題型:選擇題
A. | (a+b)(-a+b) | B. | (m+n)(m+n) | C. | (-2x+y)(2x-y) | D. | -(p-q)(q-p) |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com