分析 (1)根據(jù)EF∥BC,∠B、∠C的平分線交于O點,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上題目中給出的AB=AC,共5個等腰三角形;根據(jù)等腰三角形的性質(zhì),即可得出EF與BE、CF間有怎樣的關系;
(2)根據(jù)EF∥BC 和∠B、∠C的平分線交于O點,還可以證明出△OBE和△OCF是等腰三角形;利用幾個等腰三角形的性質(zhì),即可得出EF與BE,CF的關系;
(3)EO∥BC和OB,OC分別是∠ABC與∠ACL的角平分線,還可以證明出△BEO和△CFO是等腰三角形,利用幾個等腰三角形的性質(zhì)以及線段的和差關系,即可得出EF與BE,CF的關系.
解答 解:(1)有5個等腰三角形,EF與BE、CF間有怎樣的關系是:EF=BE+CF.
理由如下:如圖1,∵AB=AC,
∴∠ABC=∠ACB,
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,
∴∠AEF=∠AFE,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∵∠ABC和∠ACB的平分線交于點O,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∵∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴BE=OE,OF=CF,
∴△ABC,△AEF,△BOC,△BEO,△CFO是等腰三角形;
如圖1,∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
又∠B、∠C的平分線交于O點,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∴∠EOB=∠OBE,∠FCO=∠FOC,
∴OE=BE,OF=CF,
∴EF=OE+OF=BE+CF.
又AB=AC,
∴∠ABC=∠ACB,
∴∠EOB=∠OBE=∠FCO=∠FOC,
∴EF=BE+CF=2BE=2CF;
(2)有2個等腰三角形,分別是:等腰△OBE和等腰△OCF;第(1)問中的關系EF=BE+CF仍成立.
理由:如圖2,∵BO平分∠ABC,CO平分∠ACB,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴△BEO和△CFO是等腰三角形;
∵BE=OE,CF=OF,
∴EF=EO+FO=BE+CF;
(3)有2個等腰三角形:△EBO,△OCF,EF與BE,CF的關系為:EF=BE-CF,
理由如下:如圖3,∵EO∥BC,
∴∠EOB=∠OBC,∠EOC=∠OCD,
又∵OB,OC分別是∠ABC與∠ACD的角平分線,
∴∠EBO=∠OBC,∠ACO=∠OCD,
∴∠EOB=∠EBO,
∴BE=OE,
∠FCO=∠FOC,
∴CF=FO,
又∵EO=EF+FO,
∴EF=BE-CF.
點評 此題屬于三角形綜合題,主要考查學生對等腰三角形的判定與性質(zhì)和平行線性質(zhì)的理解和掌握,解題時注意:第(1)中容易忽略△ABC也是等腰三角形,因此這又是一道易錯題.進行線段的等量代換是正確解答本題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | ( ab4)4=a4b8 | B. | ( a2)3÷(a3)2=0 | C. | (-x)6÷(-x3)=-x3 | D. | x0=1 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com