分析 根據題意畫出圖形,過點A作AD⊥BC于點D,先根據三角形的面積求出AD的長,再根據勾股定理即可得出結論.
解答 解:如圖所示,△ABC中,AB=AC,BC=8,面積12,
過點A作AD⊥BC于點D,
∵△ABC中,AB=AC,AD⊥BC,BC=8,
∴BD=$\frac{1}{2}$BC=4,
∵△ABC的面積等于12,
∴$\frac{1}{2}$BC•AD=12,即$\frac{1}{2}$×8AD=12,解得AD=3,
∴AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=5;
故答案為:5.
點評 本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 6cm | B. | 7cm | C. | 8cm | D. | 10cm |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | (-2)-2=4 | B. | 20×2-3=-$\frac{1}{8}$ | C. | 46÷(-2)6=64 | D. | $\sqrt{6}$-$\sqrt{2}$=2 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com