分析 把甲場原來的存煤量看作單位“1”,當甲場用去$\frac{1}{3}$后,則還剩下1-$\frac{1}{3}$=$\frac{2}{3}$,乙場所存的煤就是甲場剩下的$\frac{1}{4}$,即乙場所存的煤是甲場的$\frac{2}{3}$×$\frac{1}{4}$=$\frac{1}{6}$,那么兩煤場共存煤189噸就是甲場的(1+$\frac{1}{6}$),由此用除法可求得甲場原來有煤多少噸,進而求得乙場有煤多少噸.
解答 解:189÷[1+(1-$\frac{1}{3}$)×$\frac{1}{4}$]
=189÷[1+$\frac{2}{3}$×$\frac{1}{4}$]
=189÷$\frac{7}{6}$
=162(噸),
189-162=27(噸),
答:甲場原來有煤162噸,乙場原來有煤27噸.
點評 解決本題關鍵是弄清楚單位“1”是誰,找到189對應的分率,然后根據已知一個數的幾分之幾是多少,求這個數,用除法求解.
科目:小學數學 來源: 題型:解答題
查看答案和解析>>
科目:小學數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com