日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(1)若線段AB中點的橫坐標是-.求直線AB的方程, 查看更多

 

題目列表(包括答案和解析)

已知橢圓x2+3y2=5,直線l:y=k(x+1)與橢圓相交于A,B兩點.

(Ⅰ)若線段AB中點的橫坐標是,求直線AB的方程;

(Ⅱ)在x軸上是否存在點M(m,0),使的值與k無關?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.

(Ⅰ)若點G的橫坐標為,求直線AB的斜率;

(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2

試問:是否存在直線AB,使得S1=S2?說明理由.

 

查看答案和解析>>

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.

(Ⅰ)若點G的橫坐標為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2
試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A,B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D,E兩點.
(Ⅰ)若點G的橫坐標為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2.試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A,B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D,E兩點.
(Ⅰ)若點G的橫坐標為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2.試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

一、選擇題:

       1. C  2. C  3. B  4.C  5. D  6. D  7. C 8. D  9. B  10. A  11. C  12. C

二、填空題:

       13.  85,1.6    14.  800   15.    16.

三、解答題:

17.解: (1)………………………1分

       ,

               化簡得…………………………3分

               

       (2))

               

             令Z),函數f(α)的對稱軸方程為

              Z).………………………………………………………12分

18. 解:(1)從盒中同時摸出兩個球,有種可能情況,…………2分

       摸出兩球顏色恰好相同即兩個黑球或兩個白球,有1+種情況,……4分

       故所求概率是………………………………………………………………6分

       (2)從盒中摸出一個球,放回后再摸出一個球,共有5×5=25種情況,……8分

       若兩球顏色不同,即“先黑后白”或“先白后黑”,共有2×3+3×2=12種可能情況,故所求概率是………………………………………………………………………12分

       (本題也可一一列出基本事件空間后求解)

19.解:(1)an+1+an=3n-54, an+2+an+1=3(n+1)-54.

       兩式相減得an+2-an=3(n∈N*),

       ∴數列a1,a3,a5,……, a2, a4, a6, …都是公差為3的等差數列.……………………1分

       a1=-27, a1+a2==-51, a2=-24。采用疊加法可得,

       當n為奇數時,an=;…………………………3分

       當n為偶數時,an=……………………………5分

       ∴an=………………………………6分

       (2)因為n為偶數,所以

              Sn=(a1+a2)+(a3+a4)+……+(an-1+an)…………………………8分

              =(3×1-54)+(3×3?54)+……+[3(n?1)?54]

              =…………………………………………10分

              若n為偶數,當n=18時,Sn取到最小值-243.……………………12分

20. (1)證明:∵PA⊥底面ABCD,∴PA⊥AD.

                       又AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.……2分

                       又BC平面PCB,∴平面PAB⊥平面PCB.……4分

       (2)證明:∵PA⊥底面ABCD,∴PA⊥AD.

                       又PC⊥AD,∴AD⊥平面PAC,∴AC⊥AD.

                       在梯形ABCD中,由AB⊥BC,AB=BC,得∠BAC=,

                       ∴∠DCA=∠BAC=.

                       又AC⊥AD,故△DAC為等腰直角三角形。

                       ∴DC=2AB,  

                       ……………………8分

(3)連結BD,交AC于點M,連結EM,則

                在△BPD中,∴PD∥EM.

                又PD平面EAC,EM平面EAC,

                ∴PD∥平面EAC.……………………(12分)

21.解:(1)設直線AB的方程為y=k(x+1),

       將y=k(x+1)代入x2+3y2=5, 消去y整理得(3k2+1)x2+6k2x+3k2-5=0.………2分

       △=36k4-4(3k2+1)(3k2-5)>0恒成立,

       設A(x1,y1), B(x2,y2), 則x1+x2=,………………………………4分

       由線段AB中點的橫坐標是,

       得解得k=±.……………………5分

       所以直線AB的方程為……………………6分

       (2)假設在x軸上存在點M(m, 0),使為常數.

       由(1)知x­1+x2=

    所以

    =

       =……………………8分

       將①代入上式,整理得

    ∴

    ∵

       綜上,在x軸上存在定點M,使為常數……………………12分

22.解:(1)f(x)的定義域為(0,+∞),f′(x)=,

令f′(x)=0,得x=e1-a.……………………3分

當x∈(0, e1-a­­­­)時,f′(x)>0,f(x)在(0, e1-a­­­­)內是單調遞增,當x∈(e1-a­,+∞)時,f′(x)<0,f(x)在(e1-a,+∞)內是單調遞減.…………………………6分

∴f(x)在x=e1-a處取得極大值f(e1-a)=ea-1.………………8分

(2)∵a>0, ∴e1-a<e2,∴[f(x)]max=f(e1-a)=ea-1,………………10分

∴f(x)的圖象g(x)=1的圖象在(0,e2]上有公共點,等價于ea-1≥1,……………12分

兩邊以e底取對數可解得a≥1,故a的取值范圍是[1,+∞)……………………14分

 

 


同步練習冊答案
主站蜘蛛池模板: 久久精品99| 成人福利视频 | 亚洲国产一区二区三区, | 欧美一级在线观看视频 | 久久婷婷视频 | 一区在线看 | 欧美日韩中文在线观看 | 亚洲嫩草 | 看黄网址 | 欧美在线www | 中文字幕在线不卡 | 亚洲欧洲精品一区二区三区 | 日韩 欧美 激情 | 青青青草视频在线 | 国产一区二区黄 | 欧美日韩一区二区视频在线观看 | 久久久久无码国产精品一区 | 干干射 | 91久久人人夜色一区二区 | 亚洲成人综合在线 | 亚洲精品亚洲人成人网 | 精品欧美一区二区三区 | www.啪啪| av在线一区二区 | 狠狠躁夜夜躁人人爽天天高潮 | 日本黄色影片在线观看 | 国产激情视频一区 | 999国产在线| 国产精品99久久久久久宅男 | 国产精品永久在线 | 特黄级国产片 | 日韩激情视频在线观看 | 精品伊人| 偷拍做爰吃奶视频免费看 | 久久久激情视频 | 999这里只有是极品 欧洲一区二区三区免费视频 | 中文字幕在线观看www | 综合国产 | 91精品久久久久久 | 国产精品视频播放 | 亚洲精品久久久久久一区二区 |