科目: 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)若有兩個不同的極值點(diǎn)
,且
,若不等式
恒成立,求正實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的一個焦點(diǎn)與上下頂點(diǎn)構(gòu)成直角三角形,以橢圓E的長軸為直徑的圓與直線
相切.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)為橢圓
上不同的三點(diǎn),
為坐標(biāo)原點(diǎn),若
,試問:
的面積是否為定值?若是,請求出定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標(biāo)準(zhǔn):用水量不超過a的部分按照平價收費(fèi),超過a的部分按照議價收費(fèi)).為了較為合理地確定出這個標(biāo)準(zhǔn),通過抽樣獲得了100位居民某年的月均用水量(單位:噸),制作了頻率分布直方圖,
(Ⅰ)用該樣本估計總體:
(1)估計該市居民月均用水量的平均數(shù);
(2)如果希望86%的居民每月的用水量不超出標(biāo)準(zhǔn),則月均用水量a的最低標(biāo)準(zhǔn)定為多少噸?
(Ⅱ)若將頻率視為概率,現(xiàn)從該市某大型生活社區(qū)隨機(jī)調(diào)查3位居民的月均用水量,其中月均用水量不超過2.5噸的人數(shù)為X,求X的分布列和均值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為:
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為:
.
(Ⅰ)求直線與曲線
公共點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)過點(diǎn)的直線
交曲線
于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校為了調(diào)查學(xué)生的學(xué)習(xí)情況,由每班隨機(jī)抽取名學(xué)生進(jìn)行調(diào)查,若一班有
名學(xué)生,將每一學(xué)生編號從
到
,請從隨機(jī)數(shù)表的第
行第
、
列(下表為隨機(jī)數(shù)表的前
行)開始,依次向右,直到取足樣本,則第五個編號為_________.
7816 | 6514 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
7816 | 6514 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)有位學(xué)生申請
、
、
三所大學(xué)的自主招生.若每位學(xué)生只能申請其中一所大學(xué),且申請其中任何一所大學(xué)是等可能的.
(1)求恰有人申請
大學(xué)的概率;
(2)求被申請大學(xué)的個數(shù)的概率分布列與數(shù)學(xué)期望
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項是首項為
的等差數(shù)列,偶數(shù)項是首項為
的等比數(shù)列.?dāng)?shù)列
前
項和為
,且滿足
,
.
(1)求數(shù)列的通項公式;
(2)若,求正整數(shù)
的值;
(3)是否存在正整數(shù),使得
恰好為數(shù)列
中的一項?若存在,求出所有滿足條件的
值,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中已知橢圓
過點(diǎn)
,其左、右焦點(diǎn)分別為
,離心率為
.
(1)求橢圓E的方程;
(2)若A,B分別為橢圓E的左、右頂點(diǎn),動點(diǎn)M滿足,且MA交橢圓E于點(diǎn)P.
(i)求證:為定值;
(ii)設(shè)PB與以PM為直徑的圓的另一交點(diǎn)為Q,問:直線MQ是否過定點(diǎn),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),
,設(shè)
.
(Ⅰ)若在
處取得極值,且
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若時函數(shù)
有兩個不同的零點(diǎn)
、
.
①求的取值范圍;②求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com