科目: 來源: 題型:
【題目】我國古代在珠算發明之前多是用算籌為工具來記數、列式和計算的.算籌實際上是一根根相同長度的小木棍,如圖,算籌表示數1~9的方法有“縱式”和“橫式”兩種,規定個位數用縱式,十位數用橫式,百位數用縱式,千位數用橫式,萬位數用縱式,…,以此類推,交替使用縱橫兩式.例如:627可以表示為“”.如果用算籌表示一個不含“0”且沒有重復數字的三位數,這個數至少要用7根小木棍的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動圓與圓
:
相切,且與圓
:
相內切,記圓心
的軌跡為曲線
.設
為曲線
上的一個不在
軸上的動點,
為坐標原點,過點
作
的平行線交曲線
于
,
兩個不同的點.
(Ⅰ)求曲線的方程;
(Ⅱ)試探究和
的比值能否為一個常數?若能,求出這個常數,若不能,請說明理由;
(Ⅲ)記的面積為
,
的面積為
,令
,求
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】從某學校高三年級共1000名男生中隨機抽取50人測量身高,據測量,被測學生身高全部介于到
之間,將測量結果按如下方式分成八組:第一組
,第二組
,…,第八組
.如圖是按上述分組方法得到的頻率分布直方圖的一部分.其中第六組、第七組、第八組人數依次構成等差數列.
(1)求第六組、第七組的頻率,并估計高三年級全體男生身高在以上(含
)的人數;
(2)學校決定讓這五十人在運動會上組成一個高旗隊,在這五十人中要選身高在以上(含
)的兩人作為隊長,求這兩人在同一組的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】小趙和小王約定在早上7:00至7:15之間到某公交站搭乘公交車去上學,已知在這段時間內,共有2班公交車到達該站,到站的時間分別為7:05,7:15,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知a>0,函數f(x)=|2x+2|+|x﹣a|的最小值為2.
(1)求實數a的值,并作出y=f(x)的圖象;
(2)當m>0,n>0,且m+n=2時,m2+n2≥f(x)恒成立,求實數x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(α為參數),曲線C2的參數方程為
(β為參數).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線C1和C2的極坐標方程;
(2)若點A在曲線C1上,點B在曲線C2上,且∠AOB,求|OA||OB|的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)a2x(k∈R,a>0,e為自然對數的底數),且曲線f(x)在點(1,f(1))處的切線的斜率為e2﹣a2.
(1)求實數k的值,并討論函數f(x)的單調性;
(2)設函數g(x),若對x1∈(0,+∞),x2∈R,使不等式f(x2)≤g(x1)﹣1成立,求實數a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點C在以AB為直徑的圓上運動,PA⊥平面ABC,且PA=AC,D,E分別是PC,PB的中點.
(1)求證:PC⊥平面ADE.
(2)若二面角C﹣AE﹣B為60°,求直線AB與平面ADE所成角的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓O:x2+y2=3上的一動點M在x軸上的投影為N,點P滿足.
(1)求動點P的軌跡C的方程;
(2)若直線l與圓O相切,且交曲線C于點A,B,試求|AB|的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com