科目: 來源: 題型:
【題目】某社區組織“學習強國”的知識競賽,從參加競賽的市民中抽出40人,將其成績分成以下6組:第1組,第2組
,第3組
,第4組
,第5組
,第6組
,得到如圖所示的頻率分布直方圖.現采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數依次為( )
A.1,3,4B.2,3,3C.2,2,4D.1,1,6
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)當時,判斷直線
與曲線
的位置關系;
(2)若直線與曲線
相交所得的弦長為
,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】國慶節來臨,某公園為了豐富廣大人民群眾的業余生活,特地以“我們都是中國人”為主題舉行猜謎語競賽.現有兩類謎語:一類叫事物謎,就是我們常說的謎語;另一類叫文義謎,也就是我們常說的燈謎,共8道題,其中事物謎4道題,文義謎4道題,孫同學從中任取3道題解答.
(1)求孫同學至少取到2道文義謎題的概率;
(2)如果孫同學答對每道事物謎題的概率都是,答對每道文義謎題的概率都是
,且各題答對與否相互獨立,已知孫同學恰好選中2道事物謎題,1道文義謎題,用
表示孫同學答對題的個數,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數).以
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
(
),將曲線
向左平移2個單位長度得到曲線
.
(1)求曲線的普通方程和極坐標方程;
(2)設直線與曲線
交于
兩點,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重疾病.而今年出現在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發現的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.某醫院為篩查冠狀病毒,需要檢驗血液是否為陽性,現有份血液樣本,有以下兩種檢驗方式:
方式一:逐份檢驗,則需要檢驗次.
方式二:混合檢驗,將其中份血液樣本分別取樣混合在一起檢驗,若不是陽性,檢驗一次就夠了,如果檢驗結果為陽性,為了明確這
份血液究竟哪幾份為陽性,就要對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
.
假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為.現取其中
份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為
,采用混合檢驗方式,樣本需要檢驗的總次數為
.
(1)若,試求
關于
的函數關系式
;
(2)若與干擾素計量
相關,其中
是不同的正實數,滿足
且
都有
成立.
(ⅰ)求證:數列為等比數列;
(ⅱ)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數的期望值更少,求
的最大值.
(,
)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓,一動圓與直線
相切且與圓
外切.
(1)求動圓圓心的軌跡
的方程;
(2)若經過定點的直線
與曲線
交于
兩點,
是線段
的中點,過
作
軸的平行線與曲線
相交于點
,試問是否存在直線
,使得
,若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,點E在AB上,AE=2EB=2,且DE⊥AB.以DE為折痕把△ADE折起,使點A到達點F的位置,且∠FEB=60°.
(1)求證:平面BFC⊥平面BCDE;
(2)若直線DF與平面BCDE所成角的正切值為,求二面角E﹣DF﹣C的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方體中,點
是線段
上的動點,則下列說法正確的是______(填序號)
①無論點在
上怎么移動,都有
;
②無論點在
上怎么移動,異面直線
與
所成角都不可能是
;
③當點移動至
中點時,直線
與平面
所成角最大;
④當點移動至
中點時,才有
與
相交于一點,記為點
,且
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com