【題目】已知是定義在
上的奇函數,當
時,
(其中
,
是自然對數的底數,
=2.71828…).
(Ⅰ)求的值;
(Ⅱ)若時,方程
有實數根,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知某服裝廠每天的固定成本是30000元,每天最大規模的生產量是件.每生產一件服裝,成本增加100元,生產
件服裝的收入函數是
,記
,
分別為每天生產
件服裝的利潤和平均利潤(
).
(1)當時,每天生產量
為多少時,利潤
有最大值;
(2)每天生產量為多少時,平均利潤
有最大值,并求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,
平面
,四邊形
是直角梯形,其中
,
.
,
.
(1)求異面直線與
所成角的大小;
(2)若平面內有一經過點
的曲線
,該曲線上的任一動點
都滿足
與
所成角的大小恰等于
與
所成角.試判斷曲線
的形狀并說明理由;
(3)在平面內,設點
是(2)題中的曲線
在直角梯形
內部(包括邊界)的一段曲線
上的動點,其中
為曲線
和
的交點.以
為圓心,
為半徑
的圓分別與梯形的邊
、
交于
、
兩點.當
點在曲線段
上運動時,試求圓半徑
的范圍及
的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓與
軸,
軸的正半軸分別交于
兩點,原點
到直線
的距離為
,該橢圓的離心率為
.
(1)求橢圓的方程;
(2)過點的直線
與橢圓交于兩個不同的點
,求線段
的垂直平分線在
軸上截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在四棱錐中,底面
是正方形,
.
(1)如圖2,設點為
的中點,點
為
的中點,求證:
平面
;
(2)已知網格紙上小正方形的邊長為,請你在網格紙上用粗線畫圖1中四棱錐
的府視圖(不需要標字母),并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:,點
.
(1)設是橢圓
上任意的一點,
是點
關于坐標原點的對稱點,記
,求
的取值范圍;
(2)已知點,
,
是橢圓
上在第一象限內的點,記
為經過原點與點
的直線,
為
截直線
所得的線段長,試將
表示成直線
的斜率
的函數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com