【題目】已知函數有三個不同的零點
(其中
),則
的值為( )
A. B.
C.
D. 1
【答案】D
【解析】
令y=,從而求導y′=
以確定函數的單調性及取值范圍,再令
=t,從而化為t2+(a﹣1)t+1﹣a=0有兩個不同的根,從而可得a<﹣3或a>1,討論求解即可.
令y=,則y′=
,
故當x∈(0,e)時,y′>0,y=是增函數,當x∈(e,+∞)時,y′>0,y=
是減函數;且
=﹣∞,
=
,
=0;
令=t,則可化為t2+(a﹣1)t+1﹣a=0,故結合題意可知,t2+(a﹣1)t+1﹣a=0有兩個不同的根,
故△=(a﹣1)2﹣4(1﹣a)>0,故a<﹣3或a>1,不妨設方程的兩個根分別為t1,t2,
①若a<﹣3,t1+t2=1﹣a>4,
與t1≤且t2≤
相矛盾,故不成立;
②若a>1,則方程的兩個根t1,t2一正一負;
不妨設t1<0<t2,結合y=的性質可得,
=t1,
=t2,
=t2,
故(1﹣)2(1﹣
)(1﹣
)
=(1﹣t1)2(1﹣t2)(1﹣t2)
=(1﹣(t1+t2)+t1t2)2
又∵t1t2=1﹣a,t1+t2=1﹣a,
∴(1﹣)2(1﹣
)(1﹣
)=1;
故選:D.
科目:高中數學 來源: 題型:
【題目】設函數f(x)= (a∈R).
(1)若f(x)在x=0處取得極值,確定a的值,并求此時曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在[3,+∞)上為減函數,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若某產品的直徑長與標準值的差的絕對值不超過1mm 時,則視為合格品,否則視為不合格品。在近期一次產品抽樣檢查中,從某廠生產的此種產品中,隨機抽取5000件進行檢測,結果發現有50件不合格品。計算這50件不合格品的直徑長與標準值的差(單位:mm), 將所得數據分組,得到如下頻率分布表:
分組 | 頻數 | 頻率 |
[-3, -2) |
| 0.10 |
[-2, -1) | 8 |
|
(1,2] |
| 0.50 |
(2,3] | 10 |
|
(3,4] |
|
|
合計 | 50 | 1.00 |
(Ⅰ)將上面表格中缺少的數據填在答題卡的相應位置;
(Ⅱ)估計該廠生產的此種產品中,不合格品的直徑長與標準值的差落在區間(1,3]內的概率;
(Ⅲ)現對該廠這種產品的某個批次進行檢查,結果發現有20件不合格品。據此估算這批產品中的合格品的件數。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求曲線
在點
處的切線方程;
(2)若函數在其定義域內為增函數,求實數
的取值范圍;
(3)設函數,若在區間
上至少存在一點
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣b)2=1(a>0)關于直線3x﹣2y=0對稱,且與直線3x﹣4y+1=0相切.
(1)求圓C的方程;
(2)若直線l:y=kx+2與圓C交于M,N兩點,是否存在直線l,使得(O為坐標原點)若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com