日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
15.如圖,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是線段BC上一動點,Q是線段DC上一動點,$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$,$\overrightarrow{CP}$=(1-λ)$\overrightarrow{CB}$,則$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范圍是(  )
A.(-∞,$\frac{9}{4}$]B.[0,2]C.[0,3]D.[0,$\frac{9}{4}$]

分析 建立如圖所示平面直角坐標系,得到相應點及向量的坐標,把$\overrightarrow{AP}$•$\overrightarrow{AQ}$利用數量積運算轉化為關于λ的函數求解.

解答 解:建立如圖所示平面直角坐標系,
∵AB=2,AD=DC=1,
∴A(0,0),B(2,0),D(0,1),C(1,1),
∵$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$,$\overrightarrow{CP}$=(1-λ)$\overrightarrow{CB}$,
∴$\overrightarrow{BP}=λ\overrightarrow{BC}$.
∴$\overrightarrow{AP}$•$\overrightarrow{AQ}$=($\overrightarrow{AB}+\overrightarrow{BP}$)•($\overrightarrow{AD}+\overrightarrow{DQ}$)
=($\overrightarrow{AB}+$$λ\overrightarrow{BC}$)•($\overrightarrow{AD}+λ\overrightarrow{DC}$)
=$\overrightarrow{AB}•\overrightarrow{AD}+λ\overrightarrow{AB}•\overrightarrow{DC}+λ\overrightarrow{BC}•\overrightarrow{AD}+{λ}^{2}\overrightarrow{BC}•\overrightarrow{DC}$
=$λ\overrightarrow{AB}•\overrightarrow{DC}+λ(\overrightarrow{AC}-\overrightarrow{AB})•\overrightarrow{AD}$+${λ}^{2}(\overrightarrow{AC}-\overrightarrow{AB})•\overrightarrow{DC}$
=$λ|\overrightarrow{AB}||\overrightarrow{DC}|cos0°+λ|\overrightarrow{AC}||\overrightarrow{AD}|cos45°$$+{λ}^{2}|\overrightarrow{AC}||\overrightarrow{DC}|cos45°$$-{λ}^{2}|\overrightarrow{AB}||\overrightarrow{DC}|cos0°$
=2λ+$\sqrt{2}×1×\frac{\sqrt{2}}{2}λ$$+\sqrt{2}×1×\frac{\sqrt{2}}{2}{λ}^{2}$-2λ2
=-λ2+3λ.
∵0≤λ≤1,∴$\overrightarrow{AP}$•$\overrightarrow{AQ}$=-λ2+3λ∈[0,2].
故選:B.

點評 本題考查平面向量的數量積運算,考查數學轉化思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

5.已知定點A(-4,0)及橢圓C:x2+3y2=6,直線MN經過橢圓C的右焦點,當M、N在橢圓C上運動時,△MNA的面積的最大值為3$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,側棱PA⊥平面ABCD,E為AD的中點,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1;
(1)求二面角C-PB-E的余弦值;
(2)在線段PE上是否存在點M,使得DM∥平面PBC?若存在,求出點M的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.a,b為正實數,若函數f(x)=ax3+bx+ab-1是奇函數,則f(2)的最小值是(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.實數x,y滿足x2+y2+xy=1,則x+y的最小值為-$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知數列{an}滿足a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),若bn+1=(n-2λ)•($\frac{1}{{a}_{n}}$+1)(n∈N*),b1=-$\frac{3}{2}$λ,且數列{bn}是單調遞增數列,則實數λ的取值范圍是$(-∞,\frac{4}{5})$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知f(x)是周期為2的奇函數,當0<x<1時,f(x)=lgx,設a=f($\frac{6}{5}$),b=f($\frac{3}{2}$),c=f($\frac{1}{2}$),則(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.下列結論正確的是(  )
A.兩個面平行,其余各面都是平行四邊形所圍成的幾何體一定是棱柱
B.若△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$<0,則△ABC是鈍角三角形
C.函數f(x)=x+$\frac{4}{x-1}$(x>1)的最小值為5
D.若G2=ab,則G是a,b的等比中項

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.學校高二足球隊有男運動員16人,女運動員8人,現用分層抽樣的方法從中抽取一個容量為9的樣本,則抽取男運動員的人數是6.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩精品一区二区在线 | 亚洲精品大片 | a毛片| 欧美成人精精品一区二区频 | 亚洲毛片| 午夜视频在线 | 天天久久婷婷 | 中文字幕av一区 | 另类中文字幕 | 久久这里有精品 | 粉嫩一区二区三区 | 中文字幕一区二区三区精彩视频 | 欧美三级一区 | 国产aⅴ爽av久久久久 | 成人国产精品久久久 | 欧美精品一区二区三区蜜臀 | av在线毛片 | 中文字幕久久综合 | 黄色日本视频 | 免费毛片a线观看 | 国产99久久久国产精品 | 欧美精品一区二区三区在线播放 | 九九九九九九精品任你躁 | 国产成人啪午夜精品网站男同 | 亚洲高清免费视频 | 日本免费一区二区三区 | 免费观看国产黄色 | 黄色一级网址 | 草草在线观看 | 新超碰在线 | 中文字幕在线一区 | 久久成人一区 | 亚洲欧美一区二区三区在线 | 国产高清视频在线 | 二区三区在线 | 亚洲高清av| 黄网站涩免费蜜桃网站 | 亚洲精品1 | 日本在线观看一区 | 狠狠干av | 91精品国产综合久久精品 |