【題目】遂寧市觀音湖港口船舶停靠的方案是先到先停.
(1)若甲乙兩艘船同時到達港口,雙方約定各派一名代表從1,2,3,4,5中各隨機選一個數(甲、乙選取的數互不影響),若兩數之和為偶數,則甲先?;若兩數之和為奇數,則乙先停靠,這種規則是否公平?請說明理由.
(2)根據以往經驗,甲船將于早上7:00~8:00到達,乙船將于早上7:30~8:30到達,請求出甲船先停靠的概率
【答案】(1)見解析(2)
【解析】試題分析:(1)甲乙兩船各取一數,共有25種取法,其中兩數和為偶數共有13種情形,故甲先?康母怕蕿,而乙先?康母怕蕿
,不公平.(2)因為時刻是連續變化的,故問題為幾何概型,可設甲船到達的時刻為
,乙船到達的時刻為
,甲船先?繛槭录
,則所有基本事件和隨機事件
所含有的基本事件都可以用平面區域的面積來度量,從而求出概率為
.
解析:(1)這種規則是不公平的
設甲勝為事件,乙勝為事件
,基本事件總數為
種,則甲勝即兩編號和為偶數所包含的基本事件數有
個:
,
,
,
,
,
,
,
,
,
,
,
,
,∴甲勝的概率
,乙勝的概率
,∴這種游戲規則不公平.
(2)設甲船先?繛槭录,甲船到達的時刻為
,乙船到達的時刻為
,
,可以看成是平面中的點,試驗的全部結果構成的區域為,
,這是一個正方形區域,面積
,事件
所構成的區域為
,
,這是一個幾何概型,所以
.
科目:高中數學 來源: 題型:
【題目】過雙曲線 ﹣
=1(a>0,b>0)的右焦點F作漸近線的垂線,設垂足為P(P為第一象限的點),延長FP交拋物線y2=2px(p>0)于點Q,其中該雙曲線與拋物線有一個共同的焦點,若
=
(
+
),則雙曲線的離心率的平方為( )
A.
B.
C.
+1
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,我國許多省市霧霾天氣頻發,為增強市民的環境保護意識,某市面向全市征召名義務宣傳志愿者,成立環境保護宣傳組織,現把該組織的成員按年齡分成
組第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示,已知第
組有
人.
(1)求該組織的人數;
(2)若在第組中用分層抽樣的方法抽取
名志愿者參加某社區的宣傳活動,應從第
組各抽取多少名志愿者?
(3)在(2)的條件下,該組織決定在這名志愿者中隨機抽取
名志愿者介紹宣傳經驗,求第
組至少有
名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升,
升,
升,1斗為10升,則下列判斷正確的是( )
A. ,
,
依次成公比為2的等比數列,且
B. ,
,
依次成公比為2的等比數列,且
C. ,
,
依次成公比為
的等比數列,且
D. ,
,
依次成公比為
的等比數列,且
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產甲、乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸,生產每噸乙產品要用A原料1噸,B原料3噸。銷售每噸甲產品可獲得利潤5萬元,每噸乙產品可獲得利潤3萬元,該企業在一個生產周期內消耗A原料不超過13噸,B原料不超過18噸,那么該企業可獲得最大利潤是___________萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,圓O是△ABC的外接圓,∠BAC的平分線交BC于點F,D是AF的延長線與⊙O的交點,AC的延線與⊙O的切線DE交于點E.
(1)求證: =
(2)若BD=3 ,EC=2,CA=6,求BF的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代數學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經驗方式為:弧田面積= (弦×矢+矢2),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現有圓心角為
,半徑等于4米的弧田,按照上述經驗公式計算所得弧田面積約是( )
A.6平方米
B.9平方米
C.12平方米
D.15平方米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知AB為圓O的直徑,C,D是圓O上的兩個點,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(1)求證:AC是∠DAB的平分線;
(2)求證:OF∥AG.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com