日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

10.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ ( t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸 建立極坐標(biāo)系,圓C的方程為 ρ=2$\sqrt{3}$sinθ.
(Ⅰ)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P的直角坐標(biāo)為(1,0),圓C與直線l交于A,B兩點(diǎn),求|PA|+|PB|的值.

分析 (Ⅰ)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ ( t為參數(shù)).消去參數(shù)得直線普通方程,由圓C的方程為 ρ=2$\sqrt{3}$sinθ,即ρ2=2$\sqrt{3}$ρsinθ,利用互化公式可得圓C的直角坐標(biāo)方程.
(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得t2-4t+1=0,△>0.利用|PA|+|PB|=|t1|+|t2|=|t1+t2|.即可得出.

解答 解:(Ⅰ)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ ( t為參數(shù)).
消去參數(shù)得直線普通方程為$\sqrt{3}$x+y-$\sqrt{3}$=0,
由圓C的方程為 ρ=2$\sqrt{3}$sinθ,即ρ2=2$\sqrt{3}$ρsinθ,
可得圓C的直角坐標(biāo)方程:x2+y2=2$\sqrt{3}$y.
(Ⅱ)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ ( t為參數(shù)).
把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得t2-4t+1=0,△>0.
∴t1+t2=4,t1t2=1.
∴|PA|+|PB|=|t1|+|t2|=|t1+t2|=4.

點(diǎn)評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、直線參數(shù)方程的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在如圖所示三棱錐D-ABC中,AD⊥DC,AB=4,AD=CD=2,∠BAC=45°,平面ACD⊥平面ABC,E,F(xiàn)分別在BD,BC上,且BD=3BE,BC=2BF.
(1)求證:BC⊥AD;
(2)求平面AEF將三棱錐D-ABC分成兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)f(x)=sin2x的圖象向右平移$\frac{π}{12}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則它的一個(gè)對稱中心是( 。
A.$(\frac{π}{24},0)$B.$(-\frac{π}{6},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{12},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(-1,0),$\overrightarrow$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則向量$\overrightarrow{a}$與$\overrightarrow$ 的夾角為(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤2x}\\{2x-5y-8≤0}\\{y≤4-x}\end{array}\right.$,則z=x+2y的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面α截一球面得圓M,過圓M的圓心的平面β與平面α所成二面角的大小為60°,平面β截該球面得圓N,若該球的表面積為64π,圓M的面積為4π,則圓N的半徑為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\sqrt{3-x}$+lg(x+2)的定義域?yàn)椋ā 。?table class="qanwser">A.(-2,3)B.(-2,3]C.(-2,+∞)D.[-2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在平行四邊形ABCD中,AB=4,AD=3,∠DAB=$\frac{π}{3}$,點(diǎn)E,F(xiàn)分別在BC,DC邊上,且$\overrightarrow{BE}$=$\frac{1}{2}$$\overrightarrow{EC}$,$\overrightarrow{DF}$=$\overrightarrow{FC}$,則$\overrightarrow{AE}$•$\overrightarrow{EF}$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.命題p:?x0∈R,x02+2x0+1≤0是真命題(選填“真”或“假”).

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 黄色免费在线观看 | 国产成人av在线 | 久久草视频 | 伦理午夜电影免费观看 | 久久国内精品 | 99视频精品| 欧美日韩国产精品 | 亚洲 中文 欧美 日韩 在线观看 | 国产精品久久久久久婷婷天堂 | 国产午夜精品久久久久久久 | 97色在线视频 | 日本免费一二区 | 国产 日韩 欧美 制服 另类 | 亚洲一区二区精品视频 | 日韩不卡在线 | 青草视频在线免费观看 | 91精品久久久久久久久久入口 | 久久国产一区二区 | 五月天久草 | 国产一区免费视频 | 日韩高清国产一区在线 | 国产成人精品不卡 | 亚洲男人的天堂网站 | 免费看的黄色 | 成人在线国产 | 日日摸夜夜添夜夜添亚洲女人 | 欧美另类一二三四 | 亚洲久久| 日本黄色的视频 | 中文字幕av一区二区 | 国产精品国产三级国产aⅴ无密码 | 欧美一区二区三区黄色 | 中文字幕在线第一页 | 中文字幕欧美日韩 | 天天天天天天天操 | 精品一区二区三区不卡 | 亚洲在线免费观看 | 亚洲第一中文字幕 | 一区在线观看视频 | 美女国产精品 | 啪一啪免费视频 |