(本題滿分12分)若實數(shù)、
、
滿足
,則稱
比
接近
.
(1)若比3接近0,求
的取值范圍;
(2)對任意兩個不相等的正數(shù)、
,證明:
比
接近
;
(3)已知函數(shù)的定義域
.任取
,
等于
和
中接近0的那個值.寫出函數(shù)
的解析式,并指出它的奇偶性、最值和單調(diào)性(結(jié)論不要求證明).
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)
(1)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題13分)已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間
是增函數(shù),求實數(shù)
的 取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知函數(shù)
(1)判斷的奇偶性并證明;
(2)若的定義域為[
](
),判斷
在定義域上的增減性,并加以證明;
(3)若,使
的值域為[
]的定義域區(qū)間[
](
)是否存在?若存在,求出[
],若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知定義域為R的函數(shù)是奇函數(shù).
(I)求a的值,并指出函數(shù)的單調(diào)性(不必說明單調(diào)性理由);
(II)若對任意的,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù).
(Ⅰ)若的解集是
,求實數(shù)
的值;
(Ⅱ)若為整數(shù),
,且函數(shù)
在
上恰有一個零點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本大題滿分12分)
某公司預(yù)計全年分批購入每臺價值為2000元的電視機共3600臺,每批都購入x臺
,且每批均需付運費400元,儲存購入的電視機全年所付保管費與每批購入電視機的總價值(不含運費)成正比。若每批購入400臺,則全年需用去運費和保管費43600元。現(xiàn)在全年只有24000元資金用于支付運費和保管費,請問能否恰
當(dāng)安排每批進貨的數(shù)量,使資金夠用?寫出你的結(jié)論并說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 已知函數(shù) ,x ∈[ 3 , 5 ] ,
(1)用定義證明函數(shù)的單調(diào)性;
(2)求函數(shù)的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)
(1)畫出函數(shù)的圖象;
(2)利用圖象回答:當(dāng)為何值時,方程
有一個解?有兩個解?有三個解?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com