【題目】如圖,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器注水,當(dāng)球面恰好接觸水面時測得水深為6cm,如不計容器的厚度,則球的體積為( )
A.
B.
C.
D.
【答案】A
【解析】解:設(shè)正方體上底面所在平面截球得小圓M,
則圓心M為正方體上底面正方形的中心.如圖.
設(shè)球的半徑為R,根據(jù)題意得球心到上底面的距離等于(R﹣2)cm,
而圓M的半徑為4,由球的截面圓性質(zhì),得R2=(R﹣2)2+42 ,
解出R=5,
∴根據(jù)球的體積公式,該球的體積V= =
=
.
故選A.
設(shè)正方體上底面所在平面截球得小圓M,可得圓心M為正方體上底面正方形的中心.設(shè)球的半徑為R,根據(jù)題意得球心到上底面的距離等于(R﹣2)cm,而圓M的半徑為4,由球的截面圓性質(zhì)建立關(guān)于R的方程并解出R=5,用球的體積公式即可算出該球的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年推出一種新型家用轎車,購買時費用為16.9萬元,每年應(yīng)交付保險費、養(yǎng)路費及汽油費共1.2萬元,汽車的維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費均比上一年增加0.2萬元.
(I)設(shè)該輛轎車使用n年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為f(n),求f(n)的表達式;
(II)這種汽車使用多少報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓
的方程為
,
點的坐標(biāo)為
.
(1)求過點且與圓
相切的直線方程;
(2)過點任作一條直線
與圓
交于不同兩點
,
,且圓
交
軸正半軸于點
,求證:直線
與
的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店為了解氣溫對某產(chǎn)品銷售量的影響,隨機記錄了該商店月份中
天的日銷售量
(單位:千克)與該地當(dāng)日最低氣溫
(單位:℃)的數(shù)據(jù),如表所示:
(1)求與
的回歸方程
:
(2)判斷與
之間是正相關(guān)還是負相關(guān);若該地
月份某天的最低氣溫為
,請用(1)中的回歸方程預(yù)測該商店當(dāng)日的銷售量.
參考公式:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形所在的平面與長方形
所在的平面垂直,
.點
是
邊的中點,點
分別在線段
,
上,且
.
(1)證明:;
(2)求二面角的正切值;
(3)求直線與直線PG所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若不等式的解集為
,求實數(shù)
的值;
(2)若不等式對一切實數(shù)
恒成立,求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙的半徑為
,圓心
的坐標(biāo)為
,其中
.
,
為該圓的兩條切線,
為坐標(biāo)原點,
,
為切點,
在第一象限,
在第四象限.
()若
時,求切線
,
的斜率.
()若
時,求
外接圓的標(biāo)準(zhǔn)方程.
()當(dāng)
點在
軸上運動時,將
表示成
的函數(shù)
,并求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足
,若
為單調(diào)遞增的等差數(shù)列,其前
項和為
,則
__________;若
為單調(diào)遞減的等比數(shù)列,其前
項和為
,則
__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com