【題目】設命題p:函數f(x)=lg(ax2-x+16a)的定義域為R;命題q:不等式3x-9x<a對任意x∈R恒成立.
(1)如果p是真命題,求實數a的取值范圍;
(2)如果命題“p或q”為真命題且“p且q”為假命題,求實數a的取值范圍.
【答案】(1).(2)
.
【解析】
(1)命題p是真命題,有a>0,△<0,即求解即可.
(2)命題q是真命題,不等式3x-9x<a對一切x∈R均成立,設y=3x-9x,令t=3x>0,則y=t-t2,t>0,通過函數的最值求解a的范圍,利用復合命題的真假關系求解即可.
解:(1)命題p是真命題,則ax2-x+16a>0恒成立,得到a>0,△=1-64a2<0,即a>,或a
(舍去),所以a的取值范圍為
.
(2)命題q是真命題,不等式3x-9x<a對一切x∈R均成立,
設y=3x-9x,令t=3x>0,則y=t-t2,t>0,
當時,
,所以
.
命題“p∨q”為真命題,“p∧q”為假命題,則p,q一真一假.
即有或
,
綜上,實數a的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知,
,
,若
,
(
).
(1)求函數的解析式;
(2)求函數在
條件下的最小值;
(3)把的圖像按向量
平移得到曲線
,過坐標原點
作
、
分別交曲線
于點
、
,直線
交
軸于點
,當
為銳角時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】物價監督部門為調研某公司新開發上市的一種產品銷售價格的合理性,對某公司的該產品的銷量與價格進行了統計分析,得到如下數據和散點圖:
定價x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=21ny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數據:,
,
,
)
(Ⅰ)根據散點圖判斷,y與x和z與x哪一對具有的線性相關性較強(給出判斷即可,不必說明理由)?
(Ⅱ)根據(Ⅰ)的判斷結果及數據,建立y關于x的回歸方程(方程中的系數均保留兩位有效數字).
附:對于一組數據(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓的圓心在
軸的正半軸上,與
軸相交于點
,且直線
被圓
截得的弦長為
.
(1)求圓的標準方程;
(2)設直線與圓
交于
兩點,那么以
為直徑的圓能否經過原點,若能,請求出直線
的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面為菱形且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=
,E為PC的中點.
(1)求直線DE與平面PAC所成角的大小;
(2)求二面角E-AD-C平面角的正切值;
(3)在線段PC上是否存在一點M,使PC⊥平面MBD成立.如果存在,求出MC的長;如果不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC中,B(-1,0),C(1,0),AB=6,點P在AB上,且∠BAC=∠PCA.
(1)求點P的軌跡E的方程;
(2)若,過點C的直線與E交于M,N兩點,與直線x=9交于點K,記QM,QN,QK的斜率分別為k1,k2,k3,試探究k1,k2,k3的關系,并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,∠ABC=,D是棱AC的中點,且AB=BC=BB1=2.
(1)求證:AB1∥平面BC1D;
(2)求異面直線AB1與BC1的夾角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著互聯網技術的快速發展,共享經濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農家樂”等形式開始在很多平臺上線.某創業者計劃在某景區附近租賃一套農房發展成特色“農家樂”,為了確定未來發展方向,此創業者對該景區附近六家“農家樂”跟蹤調查了天.得到的統計數據如下表,
為收費標準(單位:元/日),
為入住天數(單位:),以頻率作為各自的“入住率”,收費標準
與“入住率”
的散點圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若從以上六家“農家樂”中隨機抽取兩家深入調查,記為“入住率”超過
的農家樂的個數,求
的概率分布列;
(2)令,由散點圖判斷
與
哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據你的判斷結果求回歸方程.(
結果保留一位小數)
(3)若一年按天計算,試估計收費標準為多少時,年銷售額
最大?(年銷售額
入住率
收費標準
)
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是平面內互不平行的三個向量,
,有下列命題:
①方程不可能有兩個不同的實數解;
②方程有實數解的充要條件是
;
③方程有唯一的實數解
;
④方程沒有實數解.
其中真命題有 .(寫出所有真命題的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com