【題目】已知定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[-1,1]時(shí),f(x)=x2.令g(x)=f(x)-kx-k,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=0有4個(gè)不相等實(shí)根,則實(shí)數(shù)k的取值范圍是( )
A.(0,+∞)B.
C.D.
【答案】C
【解析】
令g(x)=0,得f(x)=k(x+1),作出y=f(x)在[1,3]的圖象,把函數(shù)g(x)=0有4個(gè)不相等實(shí)根,轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的4個(gè)交點(diǎn),利用數(shù)形結(jié)合法,即可求解,得到答案.
由題意,函數(shù)g(x)=f(x)-kx-k,令g(x)=0,得f(x)=k(x+1),
又由函數(shù)f(x)滿足f(x+2)=f(x),則f(x)的周期為T=2,
作出y=f(x)在[-1,3]的圖象,如圖所示.
當(dāng)直線y=k1(x+1)經(jīng)過(guò)點(diǎn)(3,1),則k1= .
因?yàn)橹本y=k(x+1)經(jīng)過(guò)定點(diǎn)(-1,0),且由題意知直線y=k(x+1)與y=f(x)的圖象有4個(gè)交點(diǎn),所以0<k≤.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,則方程
恰有2個(gè)不同的實(shí)根,實(shí)數(shù)
取值范圍__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:
(
)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(1)求拋物線的方程;
(2)設(shè)直線與拋物線
交于不同兩點(diǎn)
,若滿足
,證明直線
恒過(guò)定點(diǎn),并求出定點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,,
分別為橢圓的左,右焦點(diǎn),橢圓上點(diǎn)
的橫坐標(biāo)等于右焦點(diǎn)的橫坐標(biāo),其縱坐標(biāo)等于短半軸長(zhǎng)的
,則橢圓的離心率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,
,平面
底面
,
為
的中點(diǎn),
是棱
上的點(diǎn),
,
,
.
(1)求證:平面平面
;
(2)若,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論
的導(dǎo)函數(shù)
的單調(diào)性;
(2)當(dāng)時(shí),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,且曲線
與
在
處有相同的切線.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求證:在
上恒成立;
(Ⅲ)當(dāng)時(shí),求方程
在區(qū)間
內(nèi)實(shí)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是⊙
的直徑,
是⊙
的切線,
交⊙
于E,過(guò)E的切線與
交于D.
(I)求證:;
(II)若,
,求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓G:x2+y2-x-y=0,經(jīng)過(guò)橢圓
的右焦點(diǎn)F及上頂點(diǎn)B,過(guò)圓外一點(diǎn)(m,0)(m>a)且傾斜角為
的直線l交橢圓于C,D兩點(diǎn).
(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com