【題目】在對(duì)某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲、乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測(cè)量該產(chǎn)品中某種元素的含量(單位:毫克).下表是測(cè)量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量毫克時(shí)為優(yōu)質(zhì)品.
(1)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(2)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)的分布列及數(shù)學(xué)期望
.
【答案】(1)甲廠優(yōu)等品率為, 乙廠優(yōu)等品率為
.
(2)的分布列為
1 | 2 | 3 | |
故的數(shù)學(xué)期望為
【解析】
試題(1)因?yàn)橥ㄟ^閱讀莖葉圖可得到甲、乙兩組測(cè)量值的數(shù)據(jù),又因?yàn)楫?dāng)產(chǎn)品中的此種元素含量毫克時(shí)為優(yōu)質(zhì)品,通過數(shù)出兩組優(yōu)質(zhì)品的數(shù)據(jù)的個(gè)數(shù),再用優(yōu)質(zhì)品的的件數(shù)除以總共的樣本數(shù)即可得到甲、乙的優(yōu)質(zhì)品率.
(2)因?yàn)閺囊业爻槌龅纳鲜?/span>10件產(chǎn)品中,隨機(jī)抽取3件,由于乙產(chǎn)品中優(yōu)質(zhì)品有8件,所以優(yōu)質(zhì)品的件數(shù)共有三種情況,通過計(jì)算每種情況的概率以及數(shù)學(xué)期望的計(jì)算公式即可得到結(jié)論.
試題解析:(I)甲廠抽取的樣本中優(yōu)等品有7件,優(yōu)等品率為
乙廠抽取的樣本中優(yōu)等品有8件,優(yōu)等品率為
(II)的取值為1,2,3.
所以的分布列為
1 | 2 | 3 | |
故的數(shù)學(xué)期望為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:.
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的發(fā)展,各種“APP”(英文單詞Application的縮寫,一般指手機(jī)軟件)應(yīng)運(yùn)而生.某機(jī)構(gòu)欲對(duì)A市居民手機(jī)內(nèi)安裝的APP的個(gè)數(shù)和用途進(jìn)行調(diào)研,在使用智能手機(jī)的居民中隨機(jī)抽取100人,獲得了他們手機(jī)內(nèi)安裝APP的個(gè)數(shù),整理得到如圖所示頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)從被抽取安裝APP的個(gè)數(shù)不低于50的居民中,隨機(jī)抽取2人進(jìn)一步調(diào)研,求這2人安裝APP的個(gè)數(shù)都低于60的概率;
(Ⅲ)假設(shè)同組中的數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,以本次被抽取的居民情況為參考,試估計(jì)A市使用智能手機(jī)的居民手機(jī)內(nèi)安裝APP的平均個(gè)數(shù)在第幾組(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,
,
,且
滿足
.記點(diǎn)
的軌跡為曲線
.
(1)求的方程,并說明是什么曲線;
(2)若,
是曲線
上的動(dòng)點(diǎn),且直線
過點(diǎn)
,問在
軸上是否存在定點(diǎn)
,使得
?若存在,請(qǐng)求出定點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,
,
,令
表示集合
所含元素的個(gè)數(shù).
(1)寫出的值;
(2)當(dāng)時(shí),寫出
的表達(dá)式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如圖所示:
等級(jí) | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(Ⅰ)求,
,
的值;
(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人這任選4人,記所選4人的量化總分為,求
的分布列及數(shù)學(xué)期望
;
(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)(
,其中
表示
的方差)來評(píng)估該校安全教育活動(dòng)的成效.若
,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線
上,直線l過點(diǎn)
且與
垂直,垂足為P.
(1)當(dāng)時(shí),求
及l的極坐標(biāo)方程;
(2)當(dāng)M在C上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A與圓
:
相切,且與圓
:
相內(nèi)切,記圓心
的軌跡為曲線
.設(shè)
為曲線
上的一個(gè)不在
軸上的動(dòng)點(diǎn),
為坐標(biāo)原點(diǎn),過點(diǎn)
作
的平行線交曲線
于
,
兩個(gè)不同的點(diǎn).
(Ⅰ)求曲線的方程;
(Ⅱ)試探究和
的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請(qǐng)說明理由;
(Ⅲ)記的面積為
,
的面積為
,令
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問是否存在,使得
對(duì)
恒成立?若存在,求
的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com