日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知a為實數,。

⑴求導數;

⑵若,求在[-2,2] 上的最大值和最小值;

⑶若在(-∞,-2)和(2,+∞)上都是遞增的,求a的取值范圍。

 

【答案】

⑵f(x)在[-2,2]上的最大值為最小值為

⑶a的取值范圍是[-2,2]. 

【解析】

試題分析:⑴由原式得

⑵由 得,此時有.

或x="-1" , 又

所以f(x)在[-2,2]上的最大值為最小值為

⑶解法一:的圖象為開口向上且過點(0,-4)的拋物線,由條件得

 ∴-2≤a≤2.

所以a的取值范圍為[-2,2].

解法二:令 由求根公式得:

所以上非負.

由題意可知,當x≤-2或x≥2時, ≥0,

從而x1≥-2,  x2≤2,

 解不等式組得-2≤a≤2.

∴a的取值范圍是[-2,2]. 

考點:導數計算,利用導數研究函數的單調性、極值、最值。

點評:中檔題,此類問題較為典型,是導數應用的基本問題。在某區間,導函數值非負,函數為增函數,導函數值非正,函數為減函數。求最值應遵循“求導數,求駐點,計算極值及端點函數值,比較確定最值”。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2+4x.
(1)求函數f(x)的解析式;
(2)已知a為實數,且f(a2-a)<f(4a-4),求函數g(x)=
x
(x-a)在區間[0,2]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a為實數,函數f(x)=(x2+1)(x+a).
(1)若f'(-1)=0,求函數y=f(x)在[-
32
,1]上的最大值和最小值;
(2)若函數f(x)的圖象上有與x軸平行的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a為實數,則“0<a<
1
2
”是“函數f(x)=a|x-1|在(0,1)上單調遞增”的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•青浦區二模)已知a為實數,函數f(θ)=sinθ+a+3.
(1)若f(θ)=cosθ(θ∈R),試求a的取值范圍;
(2)若a>1,g(θ)=
3(a-1)sinθ+1
,求函數f(θ)+g(θ)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a為實數,p:點M(1,1)在圓(x+a)2+(y-a)2=4的內部; q:?x∈R,都有x2+ax+1≥0.
(1)若p為真命題,求a的取值范圍;
(2)若q為假命題,求a的取值范圍;
(3)若“p且q”為假命題,且“p或q”為真命題,求a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲免费在线视频 | 2024天天干 | 国产人成免费视频 | 国产欧美日韩综合精品一 | 亚洲女人天堂成人av在线 | 狠狠色丁香九九婷婷综合五月 | 国产精品成av人在线视午夜片 | 福利电影在线 | 亚洲精品国产setv | 亚洲视频中文字幕 | 中文字幕亚洲精品在线观看 | 一二三四区在线观看 | 亚洲国产欧美一区二区三区久久 | 国产视频一区在线 | 69久久99精品久久久久婷婷 | 欧美成人午夜精品久久久 | 伊人www| 国产欧美一区二区三区鸳鸯浴 | 99热热热 | 欧美日韩一区视频 | 影音先锋国产 | 国产成人精品高清久久 | 成人av影视在线观看 | 亚洲精品中文视频 | 久久成人av电影 | 免费av毛片 | 免费视频二区 | 一级毛片免费 | 日本一区二区三区四区 | 日韩美女视频 | 国产99久久精品 | 中文字幕 亚洲一区 | 欧美日韩亚洲国产 | 国产一区二区视频在线观看 | 视频一区在线播放 | 精品欧美一区二区三区在线观看 | 欧美精品在欧美一区二区少妇 | 欧美国产日韩在线观看 | 九九亚洲 | 日本在线一二 | 91免费在线看 |