日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=PA=4,A點(diǎn)在PD上的射影為G點(diǎn),E點(diǎn)在AB上,平面PCE⊥平面PCD.
(1)求證:AG⊥平面PCD;
(2)求直線PD與平面PCE所成角的正弦值.

【答案】
(1)證明:∵CD⊥AD,CD⊥PA,AD∩PA=A

∴CD⊥平面PAD∴CD⊥AG,

又PD⊥AG,CD∩PD=D

∴AG⊥平面PCD


(2)解:如圖建立坐標(biāo)系,則P(0,0,3),C(4,4,0),D(0,4,0),G(0,2,2),

設(shè)E(a,0,0),由(1)知: 是面PCD的法向量,

,設(shè)面PCE的法向量為

,取x=4,得:

因平面PCE⊥平面PCD, ,∴a=2,即:

,設(shè)PD與面PCE所成的角為θ,

則:


【解析】(1)先證明出CD⊥平面PAD,進(jìn)而可推斷出CD⊥AG,然后利用AG⊥PD,根據(jù)線面垂直的判定定理證明出結(jié)論.(2)建立坐標(biāo)系,先求出面PCE的法向量,再利用向量的夾角公式求出直線PD與平面PCE所成角的正弦值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面垂直的判定和空間角的異面直線所成的角的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,且a+b+c=8.
(1)若a=2,b= ,求cosC的值;
(2)若sinAcos2 +sinBcos2 =2sinC,且△ABC的面積S= sinC,求a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫(huà).如圖,該電梯的高米,它所占水平地面的長(zhǎng)米.該廣告畫(huà)最高點(diǎn)到地面的距離為米,最低點(diǎn)到地面距離米.假設(shè)某人眼睛到腳底的距離米,他豎直站在此電梯上觀看視角為.

(Ⅰ設(shè)此人到直線的距離為米,試用含的表達(dá)式表示

(Ⅱ此人到直線的距離為多少米時(shí),視角最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=ax2﹣(2a+1)x+a+1對(duì)于任意a∈[﹣1,1],都有f(x)<0,則實(shí)數(shù)x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資公司計(jì)劃投資A,B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y1與投資金額x的函數(shù)關(guān)系為y1=18﹣ ,B產(chǎn)品的利潤(rùn)y2與投資金額x的函數(shù)關(guān)系為y2= (注:利潤(rùn)與投資金額單位:萬(wàn)元).
(1)該公司已有100萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬(wàn)元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤(rùn)總和表示為x的函數(shù),并寫(xiě)出定義域;
(2)在(1)的條件下,試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體是由棱臺(tái) 和棱錐拼接而成的組合體,其底面四邊形是邊長(zhǎng)為 的菱形,且 平面

1)求證:平面 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,則實(shí)數(shù)a的取值范圍是(
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)當(dāng)x∈[0, ]時(shí),求f(x)的最大值、最小值以及取得最值時(shí)的x值;
(2)設(shè)g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對(duì)于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 欧洲成人午夜免费大片 | 黄色免费网站视频 | 黄色在线免费看 | 欧美午夜理伦三级在线观看 | 97成人在线视频 | 精品在线不卡 | 日本久久久久久 | 亚洲人成在线观看 | 亚洲综合在线一区 | 91在线观 | 亚洲一区二区三区观看 | 国产欧美精品区一区二区三区 | 亚洲天天草 | 中文字幕精品视频在线观看 | 国产精品美女久久久久久久网站 | 精品久久久精品 | 欧美日韩中文字幕在线播放 | 国产精品91av | 男女精品 | 一区二区亚洲 | 日韩大尺度在线观看 | 亚洲免费观看视频 | 日韩欧美视频 | 久久久精品视频在线观看 | 国产精品久久久久久久久久免费看 | 亚洲一区视频 | 久久久高清视频 | 欧美日韩第一 | 日韩色在线 | 成人水多啪啪片 | 国产女人和拘做受在线视频 | 精品一区不卡 | 日本久久精品视频 | 欧美一区二区三区视频 | 久久成人免费 | 超碰日韩 | 成人在线小视频 | 午夜精品久久久久久99热软件 | 久草视频观看 | 国产亚洲一区二区三区在线 | 精品在线免费视频 |