【題目】如圖,菱形中,
,
與
相交于點(diǎn)
,
平面
,
.
(1)求證:平面
;
(2)當(dāng)直線與平面
所成角的大小為
時(shí),求
的長度.
【答案】(1)見解析;(2).
【解析】
試題分析:(1)由菱形的性質(zhì)可知,由
平面
可得
,由此可證
平面
;(2)以
為原點(diǎn),以
所在直線分別為
軸,
軸,以過點(diǎn)
且平行于
的直線為
軸建立空間直角坐標(biāo)系,求出平面
的法向量及向量
,由直線
與平面
所成角的大小為
,利用向量公式可求出
的長度.
試題解析:(1)證明:四邊形
是菱形,
.………………(1分)
平面
,
平面
,…………(2分)
,………………(3分)
又平面
,
平面
,
,………………(4分)
平面
.………………(5分)
(2)以為原點(diǎn),以
所在直線分別為
軸,
軸,以過點(diǎn)
且平行于
的直線為
軸建立空間直角坐標(biāo)系.………………(6分)
則.設(shè)
,則
,
,………………(7分)
設(shè)平面的法向量為
,則
………………(8分)
即令
,得
,………………(9分)
,………………(10分)
直線
與平面
所成角的大小為
,
,………………(11分)
解得或
(舍),
.………………(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行試銷,得到如下數(shù)據(jù)及散點(diǎn)圖:
其中,
,
,
.
(1)根據(jù)散點(diǎn)圖判斷與
,
與
哪一對(duì)具有較強(qiáng)的線性相關(guān)性(給出判斷即可,不必說明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于
的回歸方程(運(yùn)算過程及回歸方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價(jià)為150元/ 時(shí),天銷售額的預(yù)報(bào)值為多少元?
附:對(duì)于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘法估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校進(jìn)行體驗(yàn),現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機(jī)抽取50人進(jìn)行統(tǒng)計(jì)(已知這50個(gè)身高介于155 到195
之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組
,第二組
,…,第八組
,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組
和第七組
還沒有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.
(1)補(bǔ)全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計(jì)這50位男生身高的中位數(shù);
(3)用分層抽樣的方法在身高為內(nèi)抽取一個(gè)容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象的一條切線為
軸.(1)求實(shí)數(shù)
的值;(2)令
,若存在不相等的兩個(gè)實(shí)數(shù)
滿足
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓(
)的離心率是
,過點(diǎn)
(
,
)的動(dòng)直線
與橢圓相交于
,
兩點(diǎn),當(dāng)直線
平行于
軸時(shí),直線
被橢圓
截得的線段長為
.
⑴求橢圓的方程:
⑵已知為橢圓的左端點(diǎn),問: 是否存在直線
使得
的面積為
?若不存在,說明理由,若存在,求出直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線
:
,以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線
:
.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的
、2倍后得到曲線
,求
的參數(shù)方程;
(2)在曲線上求一點(diǎn)
,使點(diǎn)
到直線
的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集個(gè)數(shù)為4,求a的范圍;
(2)若a∈Z,當(dāng)A∩B≠時(shí),求a的最小值,并求當(dāng)a取最小值時(shí)A∪B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款 | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,,
得到下表2:
時(shí)間代號(hào) | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 5 |
(Ⅰ)求關(guān)于
的線性回歸方程;
(Ⅱ)通過(Ⅰ)中的方程,求出關(guān)于
的回歸方程;
(Ⅲ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線性回歸方程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com