日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設(shè)a>0,函數(shù)f(x)=,b為常數(shù).
(1)證明:函數(shù)f(x)的極大值點和極小值點各有一個;
(2)若函數(shù)f(x)的極大值為1,極小值為-1,試求a的值.
【答案】分析:(1)令f′(x)=0得到ax2+2bx-a=0根據(jù)根的判別式得到方程有兩個不相等的實根設(shè)為x1,x2(x1<x2),討論函數(shù)的增減性得到函數(shù)的極大值和極小值各有一個;
(2)因為函數(shù)f(x)的極大值為1,極小值為-1,所以將x1,x2(x1<x2)代入到函數(shù)關(guān)系式中得到兩個式子,根據(jù)根與系數(shù)的關(guān)系化簡可得a的值.
解答:解:(1)證明f′(x)=,
令f′(x)=0,得ax2+2bx-a=0(*)
∵△=4b2+4a2>0,
∴方程(*)有兩個不相等的實根,記為x1,x2(x1<x2),
則f′(x)=
當(dāng)x變化時,f′(x)與f(x)的變化情況如下表:

可見,f(x)的極大值點和極小值點各有一個.
(2)解:由(1)得

兩個方程左右兩邊相加,得a(x1+x2)+2b=x22-x12
∵x1+x2=-,∴x22-x12=0,
即(x2+x1)(x2-x1)=0,
又x1<x2,
∴x1+x2=0,從而b=0,
∴a(x2-1)=0,得x1=-1,x2=1,代入得a=2.
點評:考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,以及靈活運用一元二次方程根的判別式和根與系數(shù)的關(guān)系解決數(shù)學(xué)問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,函數(shù)f(x)=x2+a|lnx-1|.
(1)當(dāng)a=1時,求曲線y=f(x)在x=1處的切線方程;
(2)當(dāng)x∈[1,+∞)時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)函數(shù).則實數(shù)a的取值范圍為
(0,3]
(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安慶模擬)設(shè)a>0,函數(shù)f(x)=lnx-ax,g(x)=lnx-
2(x-1)x+1

(1)證明:當(dāng)x>1時,g(x)>0恒成立;
(2)若函數(shù)f(x)無零點,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)有兩個相異零點x1、x2,求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,函數(shù)f (x) 是定義在(0,+∞)的單調(diào)遞增的函數(shù)且f (
axx-1
)<f(2),試求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,函數(shù)f(x)=
12
x2-(a+1)x+a(1+ln x)

(1)求曲線y=f(x)在(2,f(2))處與直線y=-x+1垂直的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 午夜免费看片 | 男人久久天堂 | 国产免费无遮挡 | 日本亚洲欧美 | 国产成人精品一区二区在线 | 国产高清在线观看 | 精品亚洲一区二区三区四区五区 | 日本久久久亚洲精品 | 亚洲欧美一区二区三区久久 | www.伊人.com | 91在线一区二区 | 日韩中文一区二区三区 | 亚洲成a| 国产精品日韩欧美一区二区 | 欧美精品成人 | 成人av影视在线观看 | 99影视| 午夜小影院| 国产精品久久久久久久久久久杏吧 | 国产综合视频 | 在线免费精品 | 久久蜜桃视频 | 亚洲精品在线视频 | 国产高清不卡一区 | 午夜免费福利视频 | 人人草人人看 | 久久精品久久久久 | 国产一区二区三区四区在线观看 | 国产精品爽 | 中文字幕一区二区三区在线视频 | 国产亚洲网站 | 人人干人人干人人干 | 黄色视屏在线免费观看 | av在线一区二区三区 | 91视频在线| 久久精品亚洲 | 国产一区免费视频 | 久久蜜桃视频 | 天天艹逼 | 在线观看羞羞 | 欧美午夜视频 |