【題目】設是實數,已知奇函數
,
(1)求的值;
(2)證明函數在R上是增函數;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范圍.
【答案】(1)1;(2)見解析;(3)
【解析】
(1)由奇函數的性質可得,可解得
的值,驗證即可得結論;(2)由(1)的結論,可得
,在已知區間上任取
;作差
、變形和定符號、由作差法分析可得結論;(3)根據題意,由函數的奇偶性與單調性分析,原不等式可以變形為
,進而可得
,求得
的最小值,即可得結果.
(1)∵f(x)為R奇函數,∴f(0)=0,,
解得a=1
(2)由(1)的結論,,
設,則
,
又由,
,
則,
則函數在
是增函數.
(3)∵f(x)為奇函數,由不等式f(t2﹣2t)+f(2t2﹣k)<0化為
f(t2﹣2t)<﹣f(2t2﹣k),即f(t2﹣2t)<f(k﹣2t2),
又∵f(t)為增函數,t2﹣2t<k﹣2t2,∴3t2﹣2t<k.
當t=﹣時,3t2﹣2t有最小值﹣
,∴k>-
.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系上,有一點列P0 , P1 , P2 , P3 , …,Pn﹣1 , Pn , 設點Pk的坐標(xk , yk)(k∈N,k≤n),其中xk、yk∈Z,記△xk=xk﹣xk﹣1 , △yk=yk﹣yk﹣1 , 且滿足|△xk||△yk|=2(k∈N* , k≤n);
(1)已知點P0(0,1),點P1滿足△y1>△x1>0,求P1的坐標;
(2)已知點P0(0,1),△xk=1(k∈N* , k≤n),且{yk}(k∈N,k≤n)是遞增數列,點Pn在直線l:y=3x﹣8上,求n;
(3)若點P0的坐標為(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線
的極坐標方程為
,曲線
的極坐標方程為
.
(1)設為參數,若
,求直線
的參數方程;
(2)已知直線與曲線
交于
,設
,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的左、右焦點為
,右頂點為
,上頂點為
,若
,
與
軸垂直,且
.
(1)求橢圓方程;
(2)過點且不垂直于坐標軸的直線與橢圓交于
兩點,已知點
,當
時,求滿足
的直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為A,B,C所對邊,a+b=4,(2﹣cosA)tan =sinA.
(1)求邊長c的值;
(2)若E為AB的中點,求線段EC的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}定義為a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求
+
+…+
的值;
(2)當a>0時,定義數列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整數i,j(i≤j),使得bi+bj=a+
a2+
﹣1.如果存在,求出一組(i,j),如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,上頂點為
,若直線
的斜率為1,且與橢圓的另一個交點為
,
的周長為
.
(1)求橢圓的標準方程;
(2)過點的直線
(直線
的斜率不為1)與橢圓交于
兩點,點
在點
的上方,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 向量 =(Sn , 1),
=(2n﹣1,
),滿足條件
∥
,
(1)求數列{an}的通項公式,
(2)設函數f(x)=( )x , 數列{bn}滿足條件b1=1,f(bn+1)=
.
①求數列{bn}的通項公式,
②設cn= ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右焦點為
,右頂點為
,已知
,其中
為坐標原點,
為橢圓的離心率.
(1)求橢圓的方程;
(2)是否存在斜率為2的直線,使得當直線
與橢圓
有兩個不同交點
時,能在直線
上找到一點
,在橢圓
上找到一點
,滿足
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com