【題目】平面內到定點F(0,1)和定直線l:y=﹣1的距離之和等于4的動點的軌跡為曲線C,關于曲線C的幾何性質,給出下列四個結論: ①曲線C的方程為x2=4y;
②曲線C關于y軸對稱
③若點P(x,y)在曲線C上,則|y|≤2;
④若點P在曲線C上,則1≤|PF|≤4
其中,所有正確結論的序號是 .
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且Sn= nan+1 , 其中a1=1
(1)求數列{an}的通項公式;
(2)若bn= +
,數列{bn}的前n項和為Tn , 求證:Tn<2n+
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=3sin(2x﹣ )的圖象為C,則下列結論中正確的序號是 . ①圖象C關于直線x=
對稱;
②圖象C關于點( ,0)對稱;
③函數f(x)在區間(﹣ ,
)內不是單調的函數;
④由y=3sin2x的圖象向右平移 個單位長度可以得到圖象C.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的方程為(x+6)2+y2=25. (Ⅰ)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求C的極坐標方程;
(Ⅱ)直線l的參數方程為 (t為參數),α為直線l的傾斜角,l與C交于A,B兩點,且|AB|=
,求l的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AC=2 ,AA1=
,AB=2,點D在棱B1C1上,且B1C1=4B1D (Ⅰ)求證:BD⊥A1C
(Ⅱ)求二面角B﹣A1D﹣C的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】綜合題。
(1)已知圓C的圓心是x﹣y+1=0與x軸的交點,且與直線x+y+3=0相切,求圓C的標準方程;
(2)若點P(x,y)在圓x2+y2﹣4y+3=0上,求 的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國際油價在某一時間內呈現出正弦波動規律:P=Asin(ωπt+ )+60(美元)[t(天),A>0,ω>0],現采集到下列信息:最高油價80美元,當t=150(天)時達到最低油價,則ω= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三條不重合的直線 和兩個不重合的平面
,下列命題正確的是( )
A.若 ,
,則
B.若 ,
,且
,則
C.若 ,
,則
D.若 ,
,且
,則
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com