已知

為定義在

上的可導(dǎo)函數(shù),

對(duì)于

恒成立,且

為自然對(duì)數(shù)的底數(shù),則( )
試題分析:函數(shù)

為定義在

上的可導(dǎo)函數(shù),滿足

,則函數(shù)為指數(shù)函數(shù),可設(shè)函數(shù)

,則導(dǎo)函數(shù)

,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023502073635.png" style="vertical-align:middle;" />,所以

,

在

上為減函數(shù),

,即

,從而得

.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)

的導(dǎo)數(shù)為

,若函數(shù)

的圖象關(guān)于直線

對(duì)稱,且函數(shù)

在

處取得極值.
(I)求實(shí)數(shù)

的值;
(II)求函數(shù)

的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)

,函數(shù)

.
(1)若

,求函數(shù)

的極值與單調(diào)區(qū)間;
(2)若函數(shù)

的圖象在

處的切線與直線

平行,求

的值;
(3)若函數(shù)

的圖象與直線

有三個(gè)公共點(diǎn),求

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)

。
(1)當(dāng)

時(shí),求函數(shù)

的單調(diào)區(qū)間;
(2)求證:當(dāng)

時(shí),對(duì)所有的

都有

成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)

.
(1)設(shè)

,試討論

單調(diào)性;
(2)設(shè)

,當(dāng)

時(shí),若

,存在

,使

,求實(shí)數(shù)

的
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)

.
(I)若

在

處取得極值,
①求

、

的值;②存在

,使得不等式

成立,求

的最小值;
(II)當(dāng)

時(shí),若

在

上是單調(diào)函數(shù),求

的取值范圍.(參考數(shù)據(jù)

)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知某生產(chǎn)廠家的年利潤(rùn)

(單位:萬(wàn)元)與年產(chǎn)量

(單位:萬(wàn)件)的函數(shù)關(guān)系式為

,則使該生產(chǎn)廠家獲得最大年利潤(rùn)的年產(chǎn)量為( )
A.9萬(wàn)件 | B.11萬(wàn)件 | C.12萬(wàn)件 | D.13萬(wàn)件 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
若函數(shù)

在

上單調(diào)遞增,那么實(shí)數(shù)

的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
若函數(shù)

對(duì)任意的

恒成立,則

___________.
查看答案和解析>>