日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設f(x)的定義域為(0,+∞),f(x)的導函數為f'(x),且對任意正數x均有f′(x)>
f(x)
x
,
(1)判斷函數F(x)=
f(x)
x
在(0,+∞)上的單調性;
(2)設x1,x2∈(0,+∞),比較f(x1)+f(x2)與f(x1+x2)的大小,并證明你的結論;
(3)設x1,x2,…xn∈(0,+∞),若n≥2,比較f(x1)+f(x2)+…+f(xn)與f(x1+x2+…+xn)的大小,并證明你的結論.
分析:(1)通過f′(x)>
f(x)
x
推出
xf′(x)-f(x)
x
>0
,說明F′(x)=
xf′(x)-f(x)
x2
>0
,即可得到F(x)=
f(x)
x
在(0,+∞)上是增函數.
(2)設x1,x2∈(0,+∞),0<x1<x1+x2,而F(x)=
f(x)
x
在(0,+∞)上是增函數,推出
f(x1)
x1
f(x1+x2)
x1+x2

然后推出 f(x1)+f(x2)<f(x1+x2).即可.
(3)法一:類似(2)的方法通過函數的單調性證明:設1,x2,…xn∈(0,+∞),f(x1)+f(x2)+…f(xn)>f(x1+x2+…+xn
法二:利用數學歸納法,利用(2)的驗證n=2時猜想成立,然后假設n=k時猜想成立,然后證明n=k+1時猜想也成立即可.
解答:解:(1)由于f′(x)>
f(x)
x
得,
xf′(x)-f(x)
x
>0
,而x>0,
則xf′(x)-f(x)>0,
則F′(x)=
xf′(x)-f(x)
x2
>0
,因此F(x)=
f(x)
x
在(0,+∞)上是增函數.
(2)由于x1,x2∈(0,+∞),則0<x1<x1+x2,而F(x)=
f(x)
x
在(0,+∞)上是增函數,則F(x1)<F(x1+x2),即
f(x1)
x1
f(x1+x2)
x1+x2

∴(x1+x2)f(x1)<x1f(x1+x2)(1),同理 (x1+x2)f(x2)<x2f(x1+x2)(2)
(1)+(2)得:(x1+x2)[f(x1)+f(x2)]<(x1+x2)f(x1+x2),而x1+x2>0,
因此 f(x1)+f(x2)<f(x1+x2).
(3)證法1:由于x1,x2∈(0,+∞),則0<x1<x1+x2+…+xn,而F(x)=
f(x)
x
在(0,+∞)上是增函數,則F(x1)<F(x1+x2+…+xn),
f(x1)
x1
f(x1+x2+…+xn)
x1+x2…+xn
,
∴(x1+x2+…+xn)f(x1)<x1f(x1+x2+…+xn
同理 (x1+x2+…+xn)f(x2)<x2f(x1+x2+…+xn),
…,
(x1+x2+…+xn)f(xn)<xnf(x1+x2+…+xn
以上n個不等式相加得:(x1+x2+…+xn)[f(x1)+f(x2)+…f(xn)]<(x1+x2+…+xn)f(x1+x2+…+xn
而x1+x2+…+xn>0,f(x1)+f(x2)+…f(xn)<f(x1+x2+…+xn).
證法2:數學歸納法
①當n=2時,由(2)知,不等式成立;
②當n=k(n≥2)時,不等式f(x1)+f(x2)+…f(xn)<f(x1+x2+…+xn)成立,
即f(x1)+f(x2)+…f(xk)<f(x1+x2+…+xk)成立,
則當n=k+1時,f(x1)+f(x2)+…f(xk)+f(xk+1)<f(x1+x2+…+xk)+f(xk+1
再由(2)的結論,f(x1+x2+…+xk)+f(xk+1)<f[(x1+x2+…+xk)+xk+1]f(x1+x2+…+xk)+f(xk+1)<f(x1+x2+…+xk+xk+1
因此不等式f(x1)+f(x2)+…f(xn)<f(x1+x2+…+xn)對任意n≥2的自然數均成立
點評:本題考查函數的單調性,函數值的大小比較,單調性的應用,數學歸納法的應用,注意數學歸納法的證明必須用上假設,考查邏輯推理能力,轉化思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(x)的定義域為(0,+∞),f(x)的導函數為f′(x),且對任意正數x均有f′(x)>
f(x)
x

(Ⅰ)判斷函數F(x)=
f(x)
x
在(0,+∞)上的單調性;
(Ⅱ)設x1,x2∈(0,+∞),比較f(x1)+f(x2)與f(x1+x2)的大小,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

18、設F(x)的定義域為R,且滿足F(ab)=F(a)F(b),其中F(2)=8.定義在R上的函數f(x)滿足下述條件:①f(x)是奇函數;②f(x+2)是偶函數;③在[-2,2]上,f(x)=F(x)
(1)設G(x)=f(x+4),判斷G(x)的奇偶性并證明;(2)解關于x的不等式:f(x)≤1.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)的定義域為[0,2],則函數f(x2)的定義域是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)的定義域為D,若f(x)滿足下面兩個條件,則稱f(x)為閉函數,[a,b]為函數f(x)的閉區間.①f(x)在D內是單調函數;②存在[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b].
(1)寫出f(x)=x3的一個閉區間;
(2)若f(x)=
13
x3-k為閉函數求k取值范圍?

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)的定義域為D,f(x)滿足下面兩個條件,則稱f(x)為閉函數.
①f(x)在D內是單調函數;
②存在[a,b]⊆D,f(x)在[a,b]上的值域為[a,b].
如果f(x)=
2x+1
+k
為閉函數,那么k的取值范圍是
-1<k≤-
1
2
-1<k≤-
1
2

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国内a∨免费播放 | 国产97久久 | 91精品国产91综合久久蜜臀 | 国产精品久久久久久久久 | 一级片在线观看 | 亚洲精品一区二区网址 | 国产福利久久 | 中文字幕精品一区 | 久久精品视频一区二区 | 成人一区视频 | 91亚洲精 | 国产免费一区 | 一区网站 | 日韩精品一区二区三区老鸭窝 | 海外中文字幕在线观看 | 欧美亚洲视频 | 亚洲二区在线视频 | 成人超碰在线 | 中文字幕日韩av | 91免费电影 | 国产性在线 | 亚洲自拍偷拍第一页 | aaa级片| 日韩在线二区 | 二区在线视频 | 2019精品手机国产品在线 | 色5月婷婷丁香六月 | 欧美一区二区三区视频 | 青青艹在线视频 | 国产美女久久 | 午夜一区二区三区 | 欧美成人激情视频 | 国产一区 | 国产精品久久久久久久久久东京 | 国产视频中文字幕 | 欧美成人精品一区二区男人小说 | 国产高清成人久久 | 韩国毛片在线 | 亚洲精品在线免费观看视频 | 亚洲精品午夜国产va久久成人 | 性一级录像片片视频免费看 |