【題目】從原點向圓
作兩條切線,切點分別為
,
,記切線
,
的斜率分別為
,
.
(Ⅰ)若圓心,求兩切線
,
的方程;
(Ⅱ)若,求圓心
的軌跡方程.
科目:高中數學 來源: 題型:
【題目】設圓的圓心為A,直線
過點B(1,0)且與x軸不重合,設P為圓A上一點,線段PB的垂直平分線交直線PA于E
(1)證明為定值,并寫出E的軌跡方程;
(2)設點M的軌跡為曲線C1,直線交C1于M,N兩點,問:在
軸上是否存在定點D使直線DM與DN的傾斜角互補,若存在求出D點的坐標,否則說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“H大橋”是某市的交通要道,提高過橋車輛的通行能力可改善整個城市的交通狀況.研究表明:在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度
(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為
;當車流密度不超過20輛/千米時,車流速度為60千米/小時;當
時,車流速度
是車流密度
的一次函數.
(1)當時,求函數
的表達式.
(2)設車流量,求當車流密度為多少時,車流量最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們把定義域為且同時滿足以下兩個條件的函數
稱為“
函數”:(1)對任意的
,總有
;(2)若
,
,則有
成立,下列判斷正確的是( )
A.若為“
函數”,則
B.若為“
函數”,則
在
上為增函數
C.函數在
上是“
函數”
D.函數在
上是“
函數”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當,
時,求滿足
的
的值;
(2)若函數是定義在
上的奇函數.
①存在,使得不等式
有解,求實數
的取值范圍;
②若函數滿足
,若對任意
且
,不等式
恒成立,求實數
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com