以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線的參數方程為
(t為參數,0<a<
),曲線C的極坐標方程為
.
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A、B兩點,當a變化時,求|AB|的最小值.
科目:高中數學 來源: 題型:解答題
已知橢圓長軸的左右端點分別為A,B,短軸的上端點為M,O為橢圓的中心,F為橢圓的右焦點,且·
=1,|
|=1.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線l交橢圓于P,Q兩點,問:是否存在直線l,使得點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,橢圓C過點,兩個焦點為
.
(1)求橢圓C的方程;
(2)是橢圓C上的兩個動點,如果直線
的斜率與
的斜率互為相反數,證明直線
的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知
,
,
,直線
與線段
、
分別交于點
、
.
(1)當時,求以
為焦點,且過
中點的橢圓的標準方程;
(2)過點作直線
交
于點
,記
的外接圓為圓
.
①求證:圓心在定直線
上;
②圓是否恒過異于點
的一個定點?若過,求出該點的坐標;若不過,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:(
)上任意一點到兩焦點距離之和為
,離心率為
,左、右焦點分別為
,
,點
是右準線上任意一點,過
作直 線
的垂線
交橢圓于
點.
(1)求橢圓的標準方程;
(2)證明:直線與直線
的斜率之積是定值;
(3)點的縱坐標為3,過
作動直線
與橢圓交于兩個不同點
,在線段
上取點
,滿足
,試證明點
恒在一定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓的左右頂點分別為
,離心率
.過該橢圓上任一點
作
軸,垂足為
,點
在
的延長線上,且
.
(1)求橢圓的方程;
(2)求動點的軌跡
的方程;
(3)設直線(
點不同于
)與直線
交于點
,
為線段
的中點,試判斷直線
與曲線
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知、
分別是橢圓
:
的左、右焦點,點
在直線
上,線段
的垂直平分線經過點
.直線
與橢圓
交于不同的兩點
、
,且橢圓
上存在點
,使
,其中
是坐標原點,
是實數.
(Ⅰ)求的取值范圍;
(Ⅱ)當取何值時,
的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知△的兩個頂點
的坐標分別是
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當時,過點
的直線
交曲線
于
兩點,設點
關于
軸的對稱
點為(
不重合) 試問:直線
與
軸的交點是否是定點?若是,求出定點,若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com