日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

13.函數(shù)$f(x)=\frac{3^x}{{{3^x}+\sqrt{3}}}$,則$f(\frac{1}{2016})+f(\frac{2}{2016})+…+f(\frac{2015}{2016})+f(\frac{2016}{2016})$=1009-$\frac{\sqrt{3}}{2}$.

分析 推導出f(x)+f(1-x)=1,從而$f(\frac{1}{2016})+f(\frac{2}{2016})+…+f(\frac{2015}{2016})+f(\frac{2016}{2016})$=1007+f($\frac{1}{2}$)+f(1),由此能求出結(jié)果.

解答 解:∵函數(shù)$f(x)=\frac{3^x}{{{3^x}+\sqrt{3}}}$,
∴f(x)+f(1-x)=$\frac{{3}^{x}}{{3}^{x}+\sqrt{3}}+\frac{{3}^{1-x}}{{3}^{1-x}+\sqrt{3}}$=$\frac{{3}^{x}}{{3}^{x}+1}+\frac{3}{3+\sqrt{3}•{3}^{x}}$=$\frac{{3}^{x}}{{3}^{x}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{3}+{3}^{x}}$=1,
∴$f(\frac{1}{2016})+f(\frac{2}{2016})+…+f(\frac{2015}{2016})+f(\frac{2016}{2016})$=1007+f($\frac{1}{2}$)+f(1)
=1007+$\frac{{3}^{\frac{1}{2}}}{{3}^{\frac{1}{2}}+\sqrt{3}}$+$\frac{3}{3+\sqrt{3}}$=1007+$\frac{1}{2}+\frac{3}{2}-\frac{\sqrt{3}}{2}$=1009-$\frac{\sqrt{3}}{2}$.
故答案為:$1009-\frac{{\sqrt{3}}}{2}$.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$|{\overrightarrow c}|=\sqrt{3}$,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,則$\overrightarrow a•\overrightarrow b+\overrightarrow b•\overrightarrow c+\overrightarrow c•\overrightarrow a$=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+2sinθ•x-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(1)當sinθ=-$\frac{1}{2}$時,求f(x)的最大值和最小值;
(2)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是單調(diào)函數(shù),且θ∈[0,2π),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列四個函數(shù)中在(0,+∞)上為增函數(shù)的是(  )
A.f(x)=3-xB.f(x)=(x-1)2C.f(x)=$\frac{1}{x}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列冪函數(shù)中過點(0,0),(1,1)的偶函數(shù)是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x-1D.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,PA垂直于矩形ABCD所在的平面,則圖中與平面PCD垂直的平面是(  )
A.平面ABCDB.平面PBCC.平面PADD.平面PBC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若對任意的x,y∈[-1,1],且x+y≠0,都有(x+y)•[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式$f({x+\frac{1}{2}})+f({2x-1})<0$;
(3)若f(x)≤m2-2am+2對任意的x∈[-1,1],m∈[1,2]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x2+bx-alnx.
(1)當a>0時,函數(shù)f(x)是否存在極值?判斷并證明你的結(jié)論;
(2)若x=2是函數(shù)f(x)的極值點,1和x0是函數(shù)f(x)的兩個不同零點,且x0∈(n,n+1),求自然數(shù)n的值;
(3)若對任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知向量$\overrightarrow m=(sinx,-1)$,向量$\overrightarrow n=(\sqrt{3}cosx,-\frac{1}{2})$,函數(shù)$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(Ⅰ)求f(x)單調(diào)遞減區(qū)間;
(Ⅱ)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,A為銳角,$a=2\sqrt{3}$,c=4,且f(A)恰是f(x)在$[{0,\frac{π}{2}}]$上的最大值,求A,b,和△ABC的面積S.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91久久久久 | 亚洲精品久久久久 | 黄色在线免费网站 | 天天射天天干天天操 | 日韩av免费在线观看 | 久久av资源| 99久久久国产精品 | 日本a在线| 日韩精品视频免费播放 | 一区二区三区网站 | 亚洲激情在线观看 | 国产精品黄色片 | 亚洲天堂免费 | 久久国产精品免费 | 一区二区高清视频 | 九九热在线视频 | 免费看黄色的视频 | 涩久久 | 日本国产在线观看 | 国产精品6 | 五月婷婷色综合 | 九九九精品视频 | 日本中文字幕在线观看 | 日韩精品视频在线 | 国产精品久久久久久久免费看 | 色婷婷av一区二区三区之e本道 | 国产成人毛片 | 国产区免费 | 黄色成人免费网站 | 69久久久 | 福利视频一区二区 | 深夜福利网址 | 日韩一区二区在线播放 | 日韩欧美专区 | 国产成人综合视频 | 日韩在线免费 | 中文字幕在线观 | 欧美日韩四区 | 一区二区中文 | 午夜在线影院 | av网站在线免费观看 |