【題目】已知函數f(x)=x2+alnx.
(1)當a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)當a=﹣2時,求函數f(x)的極值;
(3)若函數g(x)=f(x)+ 在[1,4]上是減函數,求實數a的取值范圍.
【答案】
(1)解: a=1時,f(x)=x2+lnx,f′(x)=2x+ ,
故f(1)=1,f′(1)=3,
故切線方程是:y﹣1=3(x﹣1),
即3x﹣y﹣2=0;
(2)解:函數f(x)的定義域為(0,+∞)
當a=﹣2時,f′(x)=2x﹣ =
,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
故函數f(x)單調遞減區間是(0,1),單調遞增區間是(1,+∞)
∴極小值是f(1)=1,沒有極大值;
(3)解:由g(x)=x2+alnx+ ,得g′(x)=2x+
﹣
,
又函數g(x)=x2+alnx+ 為[1,4]上的單調減函數,
則g'(x)≤0在[1,4]上恒成立,
所以不等式2x+ ﹣
≤0在[1,4]上恒成立,
即a≤ ﹣2x2在[1,4]上恒成立,
設φ(x)= ﹣2x2,顯然(x)在[1,4]上為減函數,
所以(x)的最小值為(4)=﹣ ,
∴a的取值范圍是a≤﹣
【解析】(1)求出f(1),f′(1),代入切線方程即可;(2)求出f(x)的導數,解關于導函數的不等式,求出函數的單調區間,從而求出函數的極值即可;(3)由g(x)=x2+alnx+ ,得g′(x),由g'(x)≤0在[1,4]上恒成立,可得a≤
﹣2x2在[1,4]上恒成立.構造函數φ(x)=
﹣2x2 , 求其最小值即可.
【考點精析】本題主要考查了利用導數研究函數的單調性和函數的極值與導數的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】國家“十三五”計劃,提出創新興國,實現中國創新,某市教育局為了提高學生的創新能力,把行動落到實處,舉辦一次物理、化學綜合創新技能大賽,某校對其甲、乙、丙、丁四位學生的物理成績(x)和化學成績(y)進行回歸分析,求得回歸直線方程為y=1.5x﹣35.由于某種原因,成績表(如表所示)中缺失了乙的物理和化學成績.
甲 | 乙 | 丙 | 丁 | |
物理成績(x) | 75 | m | 80 | 85 |
化學成績(y) | 80 | n | 85 | 95 |
綜合素質 | 155 | 160 | 165 | 180 |
(1)請設法還原乙的物理成績m和化學成績n;
(2)在全市物理化學科技創新比賽中,由甲、乙、丙、丁四位學生組成學校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學校代表中隨機抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質分高于160分,就能為所在學校贏得一枚榮譽獎章.若記比賽中贏得榮譽獎章的枚數為ξ,試根據上表所提供數據,預測該校所獲獎章數ξ的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cosxsin(x+ )﹣a,且x=﹣
是方程f(x)=0的一個解.
(1)求實數a的值及函數f(x)的最小正周期;
(2)求函數f(x)的單調遞減區間;
(3)若關于x的方程f(x)=b在區間(0, )上恰有三個不相等的實數根x1 , x2 , x3 , 直接寫出實數b的取值范圍及x1+x2+x3的取值范圍(不需要給出解題過程)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(log2x﹣2)(log4x﹣ )
(1)當x∈[2,4]時,求該函數的值域;
(2)若f(x)>mlog2x對于x∈[4,16]恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中有大小、質地相同的紅球、黑球各一個,現有放回地隨機摸取3次,每次摸取一個球,若摸出紅球,得10分,摸出黑球,得5分,則3次摸球所得總分至少是25分的概率是___.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2bx,g(x)=|x﹣1|,若對任意x1 , x2∈[0,2],當x1<x2時都有f(x1)﹣f(x2)<g(x1)﹣g(x2),則實數b的最小值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O點為△ABC所在平面內一點,且滿足 +2
+3
=
,現將一粒質點隨機撒在△ABC內,若質點落在△AOC的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2x﹣t(t為常數)有兩個零點,g(x)= .
(1)求g(x)的值域(用t表示);
(2)當t變化時,平行于x軸的一條直線與y=|f(x)|的圖象恰有三個交點,該直線與y=g(x)的圖象的交點橫坐標的取值集合為M,求M.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com