【題目】設函數f(x)= ,則滿足f(f(a))=2f(a)的a的取值范圍是( )
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)
【答案】C
【解析】解:令f(a)=t,
則f(t)=2t ,
當t<1時,3t﹣1=2t ,
由g(t)=3t﹣1﹣2t的導數為g′(t)=3﹣2tln2,
在t<1時,g′(t)>0,g(t)在(﹣∞,1)遞增,
即有g(t)<g(1)=0,
則方程3t﹣1=2t無解;
當t≥1時,2t=2t成立,
由f(a)≥1,即3a﹣1≥1,解得a≥ ,且a<1;
或a≥1,2a≥1解得a≥0,即為a≥1.
綜上可得a的范圍是a≥ .
故選C.
令f(a)=t,則f(t)=2t , 討論t<1,運用導數判斷單調性,進而得到方程無解,討論t≥1時,以及a<1,a≥1,由分段函數的解析式,解不等式即可得到所求范圍.
科目:高中數學 來源: 題型:
【題目】下列四個命題中,正確的有( ) ①兩個變量間的相關系數r越小,說明兩變量間的線性相關程度越低;
②命題“x∈R,使得x2+x+1<0”的否定是:“對x∈R,均有x2+x+1>0”;
③命題“p∧q為真”是命題“p∨q為真”的必要不充分條件;
④若函數f(x)=x3+3ax2+bx+a2在x=﹣1有極值0,則a=2,b=9或a=1,b=3.
A.0 個
B.1 個
C.2 個
D.3個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分) 某中學的環保社團參照國家環境標準制定了該校所在區域空氣質量指數與空氣質量等級對應關系如下表(假設該區域空氣質量指數不會超過):
空氣質量指數 | ||||||
空氣質量等級 |
|
|
|
|
|
|
該社團將該校區在年
天的空氣質量指數監測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以
天計算)全年空氣質量優良的天數(未滿一天按一天計算);
(Ⅱ)該校年
月
、
日將作為高考考場,若這兩天中某天出現
級重度污染,需要凈化空氣費用
元,出現
級嚴重污染,需要凈化空氣費用
元,記這兩天凈化空氣總費用為
元,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2+ax﹣6a2≤0},B={x||x﹣2|<a},
(1)當a=1時,求A∩B和A∪B;
(2)當BA時,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 并且滿足2Sn=an2+n,an>0(n∈N*).
(1)求a1 , a2 , a3;
(2)猜想{an}的通項公式,并加以證明;
(3)設x>0,y>0,且x+y=1,證明: ≤
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+alnx.
(1)當a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)當a=﹣2時,求函數f(x)的極值;
(3)若函數g(x)=f(x)+ 在[1,4]上是減函數,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數據繪制成頻率分布直方圖由圖中數據可知身高在[120,130]內的學生人數為( )
A.20
B.25
C.30
D.35
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com