【題目】一裝有水的直三棱柱ABC-A1B1C1容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側棱為10,側面AA1B1B水平放置,如圖所示,點D、E、F、G分別在棱CA、CB、C1B1、C1A1上,水面恰好過點D,E,F,C,且CD=2
(1)證明:DE∥AB;
(Ⅱ)若底面ABC水平放置時,求水面的高
科目:高中數學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數;
②若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,且
,設命題p:函數
在
上單調遞減;命題q:函數
在
上為增函數,
(1)若“p且q”為真,求實數c的取值范圍
(2)若“p且q”為假,“p或q”為真,求實數c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 如圖,在四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,側棱PA=PD= ,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點.
(1) 求直線PB與平面POC所成角的余弦值;
(2)線段上是否存在一點
,使得二面角
的余弦值為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
:
的左焦點是
,離心率為
,且
上任意一點
到
的最短距離為
.
(1)求的方程;
(2)過點的直線
(不過原點)與
交于兩點
、
,
為線段
的中點.
(i)證明:直線與
的斜率乘積為定值;
(ii)求面積的最大值及此時
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:對任意
,不等式
恒成立;命題q:存在
,使得
成立.
(1)若p為真命題,求m的取值范圍;
(2)當,若p且q為假,p或q為真,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓、拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點
,平面上四個點
,
,
,
中有兩個點在橢圓
上,另外兩個點在拋物線
上.
(1)求的標準方程;
(2)是否存在直線滿足以下條件:①過
的焦點
;②與
交于
兩點,且以
為直徑的圓經過原點
.若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com