【題目】已知命題p:對任意
,不等式
恒成立;命題q:存在
,使得
成立.
(1)若p為真命題,求m的取值范圍;
(2)當,若p且q為假,p或q為真,求m的取值范圍.
【答案】(1) [1,2].(2) (-∞,1)∪(1,2].
【解析】試題分析:(1)(2x-2)min≥m2-3m.即m2-3m≤-2,解得1≤m≤2;(2)p,q中一個是真命題,一個是假命題,解得m的取值范圍為(-∞,1)∪ (1,2].
試題解析:
(1)∵對任意x∈[0,1],不等式2x-2≥m2-3m恒成立,
∴(2x-2)min≥m2-3m.即m2-3m≤-2.
解得1≤m≤2.
因此,若p為真命題時,m的取值范圍是[1,2].
(2)∵a=1,且存在x∈[-1,1],使得m≤ax成立,
∴m≤x,命題q為真時,m≤1.
∵p且q為假,p或q為真,
∴p,q中一個是真命題,一個是假命題.
當p真q假時,則解得1<m≤2;
當p假q真時,即m<1.
綜上所述,m的取值范圍為(-∞,1)∪(1,2].
科目:高中數學 來源: 題型:
【題目】已知點為圓
的圓心,
是圓上動點,點
在圓的半徑
上,且有點
和
上的點
,滿足
(1)當在圓上運動時,求點
的軌跡方程;
(2)若斜率為的直線
與圓
相切,與(1)中所求點
的軌跡教育不同的兩點
是坐標原點,且
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年12月,華中地區數城市空氣污染指數“爆表”,此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與
的數據如表:
(1)由散點圖知與
具有線性相關關系,求
關于
的線性回歸方程;(提示數據:
)
(2)利用(1)所求的回歸方程,預測該市車流量為12萬輛時的濃度.
參考公式:回歸直線的方程是,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一裝有水的直三棱柱ABC-A1B1C1容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側棱為10,側面AA1B1B水平放置,如圖所示,點D、E、F、G分別在棱CA、CB、C1B1、C1A1上,水面恰好過點D,E,F,C,且CD=2
(1)證明:DE∥AB;
(Ⅱ)若底面ABC水平放置時,求水面的高
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廣場有一塊不規則的綠地如圖所示,城建部門欲在該地上建造一個底座為三角形的環境標志,小李,小王設計的底座形狀分別為,
,經測量
米,
米,
米,
(I)求的長度;
(Ⅱ)若環境標志的底座每平方米造價為元,不考慮其他因素,小李,小王誰的設計建造費用最低(請說明理由),最低造價為多少?(
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓:
的左、右焦點分別為
,上頂點為A,過點A與
垂直的直線交
軸負半軸于點
,且
,若過
,
,
三點的圓恰好與直線
相切.過定點
的直線
與橢圓
交于
,
兩點(點
在點
,
之間).
(Ⅰ)求橢圓的方程;(Ⅱ)若實數
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,
,且滿足
.
(1)求點的軌跡方程所代表的曲線
;
(2)若點,
,
是曲線
上的動點,點
在直線
上,且滿足
,
,當點
在
上運動時,求點
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
、
是橢圓
的右頂點與上頂點,直線
與橢圓相交于
、
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)當四邊形面積取最大值時,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com