【題目】已知點為圓
的圓心,
是圓上動點,點
在圓的半徑
上,且有點
和
上的點
,滿足
(1)當在圓上運動時,求點
的軌跡方程;
(2)若斜率為的直線
與圓
相切,與(1)中所求點
的軌跡教育不同的兩點
是坐標原點,且
時,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】近年來,某市實驗中學校領導審時度勢,深化教育教學改革,經過師生共同努力,高考成績碩果累累,捷報頻傳,尤其是2017年某著名高校在全國范圍內錄取的大學生中就有25名來自該中學.下表為該中學近5年被錄取到該著名高校的學生人數.(記2013年的年份序號為1,2014年的年份序號為2,依此類推……)
年份序號 | 1 | 2 | 3 | 4 | 5 |
錄取人數 | 10 | 13 | 17 | 20 | 25 |
(1)求關于
的線性回歸方程,并估計2018年該中學被該著名高校錄取的學生人數(精確到整數);
(2)若在第1年和第4年錄取的大學生中按分層抽樣法抽取6人,再從這6人中任選2人,求這2人中恰好有一位來自第1年的概率.
參考數據:,
.
參考公式:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1所示,在中,
,
,
,
為
的平分線,點
在線段
上,
.如圖2所示,將
沿
折起,使得平面
平面
,連結
,設點
是
的中點.
圖1 圖2
(1)求證: 平面
;
(2)在圖2中,若平面
,其中
為直線
與平面
的交點,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數;
②若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發生的概率,求當天的利潤不少于75元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的上頂點到右頂點的距離為
,左焦點為
,過點
且斜率為
的直線
交橢圓于
,
兩點.
(Ⅰ)求橢圓的標準方程及
的取值范圍;
(Ⅱ)在軸上是否存在定點
,使
恒為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP,ON交于點A,B,其中O為原點.
(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;
(Ⅱ)求證:A為線段BM的中點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C: ,點
在x軸的正半軸上,過點M的直線
與拋物線C相交于A,B兩點,O為坐標原點.
(1)若,且直線
的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點M,使得不論直線繞點M如何轉動,
恒為定值?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,且
,設命題p:函數
在
上單調遞減;命題q:函數
在
上為增函數,
(1)若“p且q”為真,求實數c的取值范圍
(2)若“p且q”為假,“p或q”為真,求實數c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:對任意
,不等式
恒成立;命題q:存在
,使得
成立.
(1)若p為真命題,求m的取值范圍;
(2)當,若p且q為假,p或q為真,求m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com