【題目】如圖,己知圓和雙曲線
,記
與
軸正半軸、
軸負(fù)半軸的公共點分別為
、
,又記
與
在第一、第四象限的公共點分別為
、
.
(1)若,且
恰為
的左焦點,求
的兩條漸近線的方程;
(2)若,且
,求實數(shù)
的值;
(3)若恰為
的左焦點,求證:在
軸上不存在這樣的點
,使得
.
【答案】(1);(2)
;(2)見解析.
【解析】
(1)由圓的方程求出點坐標(biāo),得雙曲線的
,再計算出
后可得漸近線方程;
(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去
后整理,可得
,
,由
先求出
,回代后求得
坐標(biāo),計算
;
(3)由已知得,設(shè)
,由圓方程與雙曲線方程聯(lián)立,消去
后整理,可解得
,
,求出
,從而可得
,由
,可知滿足要求的
點不存在.
(1)由題意圓方程為,令
得
,∴
,即
,∴
,
,∴漸近線方程為
.
(2)由(1)圓方程為,
,
設(shè),由
得,
(*),
,
,
,
所以,即
,解得
,
方程(*)為,即
,
,代入雙曲線方程得
,∵
在第一、四象限,∴
,
,
∴.
(3)由題意,
,
,
,
,
設(shè)
由得:
,
,
由得
,解得
,
,
,
所以,
,
,當(dāng)且僅當(dāng)
三點共線時,等號成立,
∴軸上不存在點
,使得
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:
函數(shù)
的最大值為1;
“
,
”的否定是“
”;
若
為銳角三角形,則有
;
“
”是“函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增”的充分必要條件.
其中錯誤的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對稱軸為坐標(biāo)軸的橢圓的焦點為
,
,
在
上.
(1)求橢圓的方程;
(2)設(shè)不過原點的直線
與橢圓
交于
,
兩點,且直線
,
,
的斜率依次成等比數(shù)列,則當(dāng)
的面積為
時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線C2的參數(shù)方程為(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程和直線C2的普通方程;
(2)若P(1,0),直線C2與曲線C1相交于A,B兩點,求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)給出兩個條件:①,②
,從中選出一個條件補充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個都選,則按第一個解答計分)在
中,
分別為內(nèi)角
所對的邊( ).
(1)求;
(2)若,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖空間幾何體中,
與
,
均為邊長為
的等邊三角形,平面
平面
,平面
平面
.
(Ⅰ)求線段的長度.
(Ⅱ)試在平面內(nèi)作一條直線,使得直線上任意一點
與
的連線
均與平面
平行,并給出詳細(xì)證明;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,
是拋物線
的焦點,
是拋物線
上的任意一點,當(dāng)
位于第一象限內(nèi)時,
外接圓的圓心到拋物線
準(zhǔn)線的距離為
.
(1)求拋物線的方程;
(2)過的直線
交拋物線
于
兩點,且
,點
為
軸上一點,且
,求點
的橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)已知直線:
,
:
若直線
與
關(guān)于
對稱,又函數(shù)
在
處的切線與
平行,求實數(shù)
的值;
(2)若,證明:當(dāng)
時,
恒成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com