【題目】下列四個命題:
函數
的最大值為1;
“
,
”的否定是“
”;
若
為銳角三角形,則有
;
“
”是“函數
在區間
內單調遞增”的充分必要條件.
其中錯誤的個數是( )
A.1B.2C.3D.4
科目:高中數學 來源: 題型:
【題目】如圖,已知扇形是一個觀光區的平面示意圖,其中扇形半徑為10米,
,為了便于游客觀光和旅游,提出以下兩種設計方案:
(1)如圖1,擬在觀光區內規劃一條三角形形狀的道路,道路的一個頂點
在弧
上,另一頂點
在半徑
上,且
,求
周長的最大值;
(2)如圖2,擬在觀光區內規劃一個三角形區域種植花卉,三角形花圃的一個頂點
在弧
上,另兩個頂點
在半徑
上,且
,
,求花圃
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學名草《周髀算經》曾記載有“勾股各自乘,并而開方除之”,用符號表示為,我們把a,b,c叫做勾股數.下列給出幾組勾股數:3,4,5;5,12,13;7,24,25;9,40,41,以此類推,可猜測第5組股數的三個數依次是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】至2018年底,我國發明專利申請量已經連續8年位居世界首位,下表是我國2012年至2018年發明專利申請量以及相關數據.
總計 | ||||||||
年代代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申請量 | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
>
注:年代代碼1~7分別表示2012~2018.
(1)可以看出申請量每年都在增加,請問這幾年中那一年的增長率達到最高,最高是多少?
(2)建立關于
的回歸直線方程(精確到0.01),并預測我國發明專利申請量突破200萬件的年份.
參考公式:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
的參數方程為
,以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線與曲線
兩交點所在直線的極坐標方程;
(2)若直線的極坐標方程為
,直線
與
軸的交點為
,與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近來天氣變化無常,陡然升溫、降溫幅度大于的天氣現象出現增多.陡然降溫幅度大于
容易引起幼兒傷風感冒疾病.為了解傷風感冒疾病是否與性別有關,在某婦幼保健院隨機對人院的
名幼兒進行調查,得到了如下的列聯表,若在全部
名幼兒中隨機抽取
人,抽到患傷風感冒疾病的幼兒的概率為
,
(1)請將下面的列聯表補充完整;
患傷風感冒疾病 | 不患傷風感冒疾病 | 合計 | |
男 | 25 | ||
女 | 20 | ||
合計 | 100 |
(2)能否在犯錯誤的概率不超過的情況下認為患傷風感冒疾病與性別有關?說明你的理由;
(3)已知在患傷風感冒疾病的名女性幼兒中,有
名又患黃痘病.現在從患傷風感冒疾病的
名女性中,選出
名進行其他方面的排查,記選出患黃痘病的女性人數為
,求
的分布列以及數學期望.下面的臨界值表供參考:
參考公式:,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知曲線:
和曲線
:
,以極點
為坐標原點,極軸為
軸非負半軸建立平面直角坐標系.
(1)求曲線和曲線
的直角坐標方程;
(2)若點是曲線
上一動點,過點
作線段
的垂線交曲線
于點
,求線段
長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某茶樓有四類茶飲,假設為顧客準備泡茶工具所需的時間互相獨立,且都是整數分鐘,經統計以往為100位顧客準備泡茶工具所需的時間,結果如下:
類別 | 鐵觀音 | 龍井 | 金駿眉 | 大紅袍 |
顧客數(人) | 20 | 30 | 40 | 10 |
時間 | 2 | 3 | 4 | 6 |
注:服務員在準備泡茶工具時的間隔時間忽略不計,并將頻率視為概率.
(1)求服務員恰好在第6分種開始準備第三位顧客的泡茶工具的概率;
(2)用表示至第4分鐘末已準備好了工具的顧客人數,求
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com