【題目】某茶樓有四類茶飲,假設為顧客準備泡茶工具所需的時間互相獨立,且都是整數分鐘,經統計以往為100位顧客準備泡茶工具所需的時間,結果如下:
類別 | 鐵觀音 | 龍井 | 金駿眉 | 大紅袍 |
顧客數(人) | 20 | 30 | 40 | 10 |
時間 | 2 | 3 | 4 | 6 |
注:服務員在準備泡茶工具時的間隔時間忽略不計,并將頻率視為概率.
(1)求服務員恰好在第6分種開始準備第三位顧客的泡茶工具的概率;
(2)用表示至第4分鐘末已準備好了工具的顧客人數,求
的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】(已知數列{}滿足:
,
為數列
的前
項和.
(1) 若{}是遞增數列,且
成等差數列,求
的值;
(2) 若,且{
}是遞增數列,{
}是遞減數列,求數列{
}的通項公式;
(3) 若,對于給定的正整數
,是否存在一個滿足條件的數列
,使得
,如果存在,給出一個滿足條件的數列,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:
函數
的最大值為1;
“
,
”的否定是“
”;
若
為銳角三角形,則有
;
“
”是“函數
在區間
內單調遞增”的充分必要條件.
其中錯誤的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
(
)的焦點是橢圓
:
(
)的右焦點,且兩曲線有公共點
(1)求橢圓的方程;
(2)橢圓的左、右頂點分別為
,
,若過點
且斜率不為零的直線
與橢圓
交于
,
兩點,已知直線
與
相較于點
,試判斷點
是否在一定直線上?若在,請求出定直線的方程;若不在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“微信運動”是手機推出的多款健康運動軟件中的一款,大學生
的微信好友中有400位好友參與了“微信運動”.他隨機抽取了40位參與“微信運動”的微信好友(女20人,男20人)在某天的走路步數,經統計,其中女性好友走路的步數情況可分為五個類別:
、0~2000步,(說明:“0~2000”表示“大于或等于0,小于2000”,以下同理),
、2000~5000步,
、5000~8000步,
、8000~10000步,
、10000~12000步,且
三種類別的人數比例為
,將統計結果繪制如圖所示的柱形圖;男性好友走路的步數數據繪制如圖所示的頻率分布直方圖.
參與者 | 超越者 | 合計 | |
男 | 20 | ||
女 | 20 | ||
合計 | 40 |
若某人一天的走路步數大于或等于8000,則被系統認定為“超越者”,否則被系統認定為“參與者”.
(Ⅰ)若以大學生抽取的微信好友在該天行走步數的頻率分布,作為參與“微信運動”的所有微信好友每天走路步數的概率分布,試估計大學生
的參與“微信運動”的400位微信好友中,每天走路步數在
(Ⅱ)若在大學生該天抽取的步數在8000~12000的微信好友中,按男女比例分層抽取9人進行身體狀況調查,然后再從這9位微信好友中隨機抽取4人進行采訪,求其中至少有一位女性微信好友被采訪的概率;
(Ⅲ)請根據抽取的樣本數據完成下面的列聯表,并據此判斷能否有
的把握認為“認定類別”與“性別”有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了改善空氣質量,某市規定,從2018年1月1日起,對二氧化碳排放量超過的輕型汽車進行懲罰性征稅.檢測單位對甲乙兩品牌輕型汽車各抽取5輛進行二氧化碳排放量檢測,記錄如下:(單位:
)
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | 100 | 160 |
經測算得乙品牌輕型汽車二氧化碳排放量的平均值為.
(1)求表中的值,并比較甲乙兩品牌輕型汽車二氧化碳排放量的穩定性;
(2)從被檢測的5輛甲品牌汽車中隨機抽取2輛,求至少有1輛二氧化碳排放量超過的概率.(注:方差
,其中
為
的平均數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都是40%.現采用隨機模擬的方法估計該運動員三次投籃恰有一次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數作為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.25B.0.2C.0.35D.0.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長是短軸長的兩倍,焦距為
.
(1)求橢圓的標準方程;
(2)不過原點的直線與橢圓
交于兩點
、
,且直線
、
、
的斜率依次成等比數列,問:直線是否定向的,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com