日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+14=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,
2
為半徑的圓與圓C有公共點,則k的最大值是______.
圓的方程x2+y2-8x+14=0化為標準方程為(x-4)2+y2=2,得到圓心C(4,0),半徑r=
2

∵直線y=kx-2上至少存在一點,使得以該點為圓心,
2
為半徑的圓與圓C有公共點,
∴直線kx-y-2=0與圓C′:(x-4)2+y2=8有公共點,
∴圓心到直線的距離d≤2
2

|4k-2|
k2+1
≤2
2
,即2k2-4k-1≤0,
2-
6
2
≤k≤
2+
6
2

∴k的最大值是
2+
6
2

故答案為:
2+
6
2
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設圓(x-2)2+(y-2)2=4的切線l與兩坐標軸交于點A(a,0),B(0,b),ab≠0.
(1)證明:(a-4)(b-4)=8;
(2)若a>4,b>4,求△AOB的面積的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4,設圓C的半徑為1,圓心C在直線l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)當圓心C在直線l上移動時,求點A到圓C上的點的最短距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓O:x2+y2=2,直線l:y=kx-2.
(1)若直線l與圓O交于不同的兩點A,B,當∠AOB=
π
2
時,求k的值.
(2)若k=
1
2
,P是直線l上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,探究:直線CD是否過定點;
(3)若EF、GH為圓O:x2+y2=2的兩條相互垂直的弦,垂足為M(1,
2
2
),求四邊形EGFH的面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若直線l:mx-y=4被圓C:x2+y2-2y-8=0截得的弦長為4,則m的值為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓C:x2+y2+ax-2y-15=0過點A(1,-2).
(1)求a的值;
(2)若直線x+y+m=0與圓C相切,求m的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

直線3x+4y-4=0與圓(x-2)2+(y+3)2=9交于E、F兩點,則△EOF(O是原點)的面積為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

對任意實數K,直線(K+1)x-Ky-1=0與圓x2+y2-2x-2y-2=0的位置關系是(  )
A.相交B.相切
C.相離D.與K的值有關

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

圓C1:x2+y2+2x-3=0和圓C2:x2+y2-4y+3=0的位置關系為(  )
A.相離B.相交C.外切D.內含

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美| 婷婷成人免费视频 | 国产一二三区在线观看 | 一区不卡在线观看 | xxxx性欧美 | 国产精品免费在线 | 久久激情视频 | 综合色婷婷一区二区亚洲欧美国产 | 久久久久久久 | 一本色道久久99精品综合 | 国产精品久久久久久久久久东京 | 欧美精品一区二区在线观看 | 中文字幕视频在线播放 | 欧美日韩网站在线观看 | 成人黄色在线视频 | 欧美在线观看免费观看视频 | 精品成人一区二区 | 99视频网 | 视频精品一区二区三区 | 日韩欧美在线观看视频网站 | 欧美日韩成人一区 | 日本高清精品 | 亚洲国产视频精品 | 免费毛片视频 | 国产精品国产a级 | 久久成人免费网站 | 国产在线精品成人免费怡红院 | 久久不射网| 青青草视频免费 | 国产精品视频一区二区三区四区国 | 精品久久久久久久久久久久久久 | 91在线观看网站 | 国产精品一区二区无线 | 久99久在线观看 | 久久99影视 | 一级毛片视频播放 | 亚洲性在线视频 | 国产黄色一级片 | 中文一区| 一级爱爱片 | 精品久久网 |