分析 (1)設等比數列{an}的公比為q,由3a7=a42,a2=2a1,可得$3{a}_{1}{q}^{6}$=${a}_{1}^{2}{q}^{6}$,解得q,a1.再利用等比數列的通項公式與求和公式即可得出.
(2)利用等差數列的通項公式、“裂項求和”方法即可得出.
解答 (1)證明:設等比數列{an}的公比為q,
∵3a7=a42,a2=2a1,∴$3{a}_{1}{q}^{6}$=${a}_{1}^{2}{q}^{6}$,q=2.
解得a1=3.
∴an=3×2n-1,Sn=$\frac{3({2}^{n}-1)}{2-1}$=3×2n-3.
∴Sn=2an-3.
(2)解:設等差數列{bn}的公差為d,b3=a4=3×23=24,b15=a5=3×24=48.
∴48=24+12d,解得d=2.
∴bn=24+2(n-3)=2n+18.
$\frac{4}{(n+8)_{n}}$=$\frac{4}{(n+8)•(2n+18)}$=2$(\frac{1}{n+8}-\frac{1}{n+9})$.
∴數列{$\frac{4}{(n+8)_{n}}$}的前n項和Tn=2$[(\frac{1}{9}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{11})$+…+$(\frac{1}{n+8}-\frac{1}{n+9})]$
=2$(\frac{1}{9}-\frac{1}{n+9})$=$\frac{2n}{9(n+9)}$.
點評 本題考查了等差數列與等比數列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1 | B. | $\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1 | C. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,-2,3) | B. | (-1,-2,-3) | C. | (-1,2,-3) | D. | (1,2,3) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com