【題目】已知函數,若不等式
在
上恒成立,則實數
的取值范圍是( ).
A. B.
C.
D.
【答案】C
【解析】
將不等式變形后,構造函數g(x),結合選項對m討論,利用導數分析函數的單調性及函數值的分布情況,對選項排除驗證即可.
原不等式轉化為>0在
上恒成立,
記g(x)=,
由基本初等函數的圖象及導數的幾何意義可知,
y=x+1與y=x-1分別為y=與y=
的切線,
即,(x=0時等號成立),
(x=1時等號成立),可得
(x=0時等號成立),
∴m時,
在
上恒成立,
又在
上恒成立,
∴在
上恒成立,
∴m時符合題意,排除A、B;
當m>0時,驗證C選項是否符合,只需代入m=3,此時g(x)=,
則,此時
0,
令)在
上單調遞增,且
,∴
在
上恒成立,即
在
上單調遞增,而
0,∴
在
上恒成立,
∴g(x)在上單調遞增,又g(0)=0,∴g(x)
在
上恒成立,
即m=3符合題意,排除D,
故選C.
科目:高中數學 來源: 題型:
【題目】一般來說,一個人腳掌越長,他的身高就越高,現對10名成年人的腳掌與身高
進行測量,得到數據(單位:cm)作為樣本如表所示:
腳掌長( | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
身高( | 141 | 146 | 154 | 160 | 169 | 176 | 181 | 188 | 197 | 203 |
(1)在上表數據中,以“腳掌長”為橫坐標,“身高”為縱坐標,作出散點圖后,發現散點在一條直線附近,試求“身高”與“腳掌長”之間的線性回歸方程;
(2)若某人的腳掌長為26.5cm,試估計此人的身高;
(3)在樣本中,從身高180cm以上的4人中隨機抽取2人進行進一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(參考數據:,
,
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,拋物線
的準線被橢圓
截得的線段長為
.
(1)求橢圓的方程;
(2)如圖,點分別是橢圓
的左頂點、左焦點直線
與橢圓
交于不同的兩點
(
都在
軸上方).且
.證明:直線
過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】汕尾市基礎教育處為調查在校中學生每天放學后的自學時間情況,在本市的所有中學生中隨機抽取了120名學生進行調查,現將日均自學時間小于1小時的學生稱為“自學不足”者根據調查結果統計后,得到如下
列聯表,已知在調查對象中隨機抽取1人,為“自學不足”的概率為
.
非自學不足 | 自學不足 | 合計 | |
配有智能手機 | 30 | ||
沒有智能手機 | 10 | ||
合計 |
請完成上面的列聯表;
根據列聯表的數據,能否有
的把握認為“自學不足”與“配有智能手機”有關?
附表及公式: ,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
、
,圓
經過橢圓
的兩個焦點和兩個頂點,點
在橢圓
上,且
,
.
(Ⅰ)求橢圓的方程和點
的坐標;
(Ⅱ)過點的直線
與圓
相交于
、
兩點,過點
與
垂直的直線
與橢圓
相交于另一點
,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司全年的純利潤為元,其中一部分作為獎金發給
位職工,獎金分配方案如下首先將職工工作業績(工作業績均不相同)從大到小,由1到
排序,第1位職工得獎金
元,然后再將余額除以
發給第2位職工,按此方法將獎金逐一發給每位職工,并將最后剩余部分作為公司發展基金.
(1)設為第
位職工所得獎金額,試求
并用
和
表示
(不必證明);
(2)證明并解釋此不等式關于分配原則的實際意義;
(3)發展基金與和
有關,記為
對常數
,當
變化時,求
.(可用公式
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點
,
,
,
是橢圓上任意三點,
,
關于原點對稱且滿足
.
(1)求橢圓的方程.
(2)若斜率為的直線與圓:
相切,與橢圓
相交于不同的兩點
、
,求
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于集合,定義函數
對于兩個集合
,定義集合
. 已知
,
.
(Ⅰ)寫出和
的值,并用列舉法寫出集合
;
(Ⅱ)用表示有限集合
所含元素的個數,求
的最小值;
(Ⅲ)有多少個集合對,滿足
,且
?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com