分析 (1)由題意可知:M的坐標為(x,y),P的坐標為(x',y'),則$|{MD}|=\frac{4}{5}|{PD}|$,解得:$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{5}{4}y}\end{array}\right.$,代入x'2+y'2=25,整理得點M的軌跡C的方程;
(2)設直線方程,代入橢圓方程,由韋達定理可知:x1+x2=3,x1•x2=-8,利用弦長公式求出丨AB丨,求出點F到AB的距離,即可求△ABF的面積.
解答 解:(1)設M的坐標為(x,y),P的坐標為(x',y'),
由$|{MD}|=\frac{4}{5}|{PD}|$,解得:$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{5}{4}y}\end{array}\right.$,
∵P在圓上,
∴x'2+y'2=25,即x2+($\frac{5}{4}$y)2=25,整理得$\frac{x^2}{25}+\frac{y^2}{16}=1$.
(2)直線$AB:y=\frac{4}{5}({x-3})$,代入C的方程,整理得:x2-3x-8=0
∴由韋達定理可知:x1+x2=3,x1•x2=-8,
∴線段AB的長度為$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\frac{41}{5}$,
點F到AB的距離為$d=\frac{24}{{\sqrt{41}}}$,故$S=\frac{1}{2}|{AB}|•d=\frac{{12\sqrt{41}}}{5}$.
點評 本題考查點的軌跡方程的求法,橢圓的標準方程的應用,直線與橢圓的位置關系,考查韋達定理,弦長公式的應用,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $y=x+\frac{4}{x}$ | B. | $y=sinx+\frac{4}{sinx}(0<x<π)$ | ||
C. | $y={log_2}x+\frac{4}{{{{log}_2}x}}$ | D. | $y={e^x}+\frac{4}{e^x}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{\sqrt{7}}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com