【題目】用紅、黃、藍三種顏色給如圖所示的六個相連的圓涂色,若每種顏色只能涂兩個圓,且相鄰兩個圓所涂顏色不能相同,則不同的涂色方案的種數是( )
A.12
B.24
C.30
D.36
【答案】C
【解析】解:先涂前三個圓,再涂后三個圓. 因為種顏色只能涂兩個圓,且相鄰兩個圓所涂顏色不能相同,
分兩類,
第一類,前三個圓用3種顏色,三個圓也用3種顏色,
若涂前三個圓用3種顏色,有A33=6種方法;則涂后三個圓也用3種顏色,有C21C21=4種方法,
此時,故不同的涂法有6×4=24種.
第二類,前三個圓用2種顏色,后三個圓也用2種顏色,
若涂前三個圓用2種顏色,則涂后三個圓也用2種顏色,共有C31C21=6種方法.
綜上可得,所有的涂法共有24+6=30 種.
故選:C.
先涂前三個圓,再涂后三個圓.若涂前三個圓用3種顏色,求出不同的涂法種數.若涂前三個圓用2種顏色,再求出涂法種數,把這兩類涂法的種數相加,即得所求.
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S= (b2+c2﹣a2),則∠B=( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a,b,c成等比數列,且 .
(Ⅰ)求角B的大小;
(Ⅱ)若b=3,求△ABC的面積最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,則m的范圍是( )
A.(1,9)
B.(﹣∞,1]∪(9,+∞)
C.[1,9)
D.(﹣∞,1)∪(9,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com