【題目】在平面直角坐標(biāo)系中,曲線
上的動(dòng)點(diǎn)
到點(diǎn)
的距離減去
到直線
的距離等于1.
(1)求曲線的方程;
(2)若直線 與曲線
交于
,
兩點(diǎn),求證:直線
與直線
的傾斜角互補(bǔ).
【答案】(1);(2)見(jiàn)解析
【解析】
(1)利用拋物線定義“到定點(diǎn)距離等2于到定直線距離的點(diǎn)的軌跡”求動(dòng)點(diǎn)的軌跡;
(2)設(shè)直線與拋物線方程聯(lián)立化為
,
.由于
,利用根與系數(shù)的關(guān)系與斜率計(jì)算公式可得:直線
與直線
的斜率之和0,即可證明
(1)曲線上的動(dòng)點(diǎn)
到點(diǎn)
的距離減去
到直線
的距離等于1,
所以動(dòng)點(diǎn)到直線
的距離與它到點(diǎn)
的距離相等,
故所求軌跡為:以原點(diǎn)為頂點(diǎn),開(kāi)口向右的拋物線;
(2)證明:設(shè).聯(lián)立,得
,(
)
∴,
,
,∴直線線
與直線
的斜率之和:
因?yàn)?/span>∴直線
與直線
的斜率之和為
,
∴直線與直線
的傾斜角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一長(zhǎng)為100碼,寬為80碼,球門(mén)寬為8碼的矩形足球運(yùn)動(dòng)場(chǎng)地,如圖所示,其中是足球場(chǎng)地邊線所在的直線,球門(mén)
處于所在直線的正中間位置,足球運(yùn)動(dòng)員(將其看做點(diǎn)
)在運(yùn)動(dòng)場(chǎng)上觀察球門(mén)的角
稱(chēng)為視角.
(1)當(dāng)運(yùn)動(dòng)員帶球沿著邊線奔跑時(shí),設(shè)
到底線的距離為
碼,試求當(dāng)
為何值時(shí)
最大;
(2)理論研究和實(shí)踐經(jīng)驗(yàn)表明:張角越大,射門(mén)命中率就越大.現(xiàn)假定運(yùn)動(dòng)員在球場(chǎng)都是沿著垂直于底線的方向向底線運(yùn)球,運(yùn)動(dòng)到視角最大的位置即為最佳射門(mén)點(diǎn),以
的中點(diǎn)為原點(diǎn)建立如圖所示的直角坐標(biāo)系,求在球場(chǎng)區(qū)域
內(nèi)射門(mén)到球門(mén)
的最佳射門(mén)點(diǎn)的軌跡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了紀(jì)念“一帶一路”倡議提出五周年,某城市舉辦了一場(chǎng)知識(shí)競(jìng)賽,為了了解市民對(duì)“一帶一路”知識(shí)的掌握情況,從回收的有效答卷中按青年組和老年組各隨機(jī)抽取了40份答卷,發(fā)現(xiàn)成績(jī)都在內(nèi),現(xiàn)將成績(jī)按區(qū)間
,
,
,
,
進(jìn)行分組,繪制成如下的頻率分布直方圖.
青年組
中老年組
(1)利用直方圖估計(jì)青年組的中位數(shù)和老年組的平均數(shù);
(2)從青年組,
的分?jǐn)?shù)段中,按分層抽樣的方法隨機(jī)抽取5份答卷,再?gòu)闹羞x出3份答卷對(duì)應(yīng)的市民參加政府組織的座談會(huì),求選出的3位市民中有2位來(lái)自
分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,向量
是與向量
夾角為
的單位向量.
(1)求向量;
(2)若向量與向量
共線,且
與
的夾角為鈍角,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一列非零向量滿足:
,
.
(1)寫(xiě)出數(shù)列的通項(xiàng)公式;
(2)求出向量與
的夾角
,并將
中所有與
平行的向量取出來(lái),按原來(lái)的順序排成一列,組成新的數(shù)列
,
,
為坐標(biāo)原點(diǎn),求點(diǎn)列
的坐標(biāo);
(3)令(
),求
的極限點(diǎn)位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年9月,臺(tái)風(fēng)“山竹”在我國(guó)多個(gè)省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個(gè)農(nóng)戶(hù)在該次臺(tái)風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,
,
,
,
(單位:元),得到如圖所示的頻率分布直方圖.
(1)試根據(jù)頻率分布直方圖估計(jì)該地區(qū)每個(gè)農(nóng)戶(hù)的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)臺(tái)風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣?huì)發(fā)出倡議,為該地區(qū)的農(nóng)戶(hù)捐款幫扶,現(xiàn)從這50戶(hù)并且損失超過(guò)4000元的農(nóng)戶(hù)中隨機(jī)抽取2戶(hù)進(jìn)行重點(diǎn)幫扶,設(shè)抽出損失超過(guò)8000元的農(nóng)戶(hù)數(shù)為,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是圓
上的任意一點(diǎn),
是過(guò)點(diǎn)
且與
軸垂直的直線,
是直線
與
軸的交點(diǎn),點(diǎn)
在直線
上,且滿足
.當(dāng)點(diǎn)
在圓
上運(yùn)動(dòng)時(shí),記點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)已知點(diǎn),過(guò)
的直線
交曲線
于
兩點(diǎn),交直線
于點(diǎn)
.判定直線
的斜率是否依次構(gòu)成等差數(shù)列?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
的導(dǎo)函數(shù)為
.
(1)試討論函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意的,關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角梯形中,
,
,
,
為
的中點(diǎn),如圖
將
沿
折到
的位置,使
,點(diǎn)
在
上,且
,如圖2.
求證:
平面
;
求二面角
的正切值;
在線段
上是否存在點(diǎn)
,使
平面
?若存在,確定
的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com