【題目】近幾年來,“精準扶貧”是政府的重點工作之一,某地政府對240戶貧困家庭給予政府資金扶助,以發展個體經濟,提高家庭的生活水平.幾年后,一機構對這些貧困家庭進行回訪調查,得到政府扶貧資金數、扶貧貧困家庭數(戶)與扶貧后脫貧家庭數
(戶)的數據關系如下:
政府扶貧資金數(萬元) | 3 | 5 | 7 | 9 |
政府扶貧貧困家庭數 | 20 | 40 | 80 | 100 |
扶貧后脫貧家庭數 | 10 | 30 | 70 | 90 |
(Ⅰ)求幾年來該地依靠“精準扶貧”政策的脫貧率是多少;(答案精準到0.1%)
(Ⅱ)從政府扶貧資金數為3萬元和7萬元并且扶貧后脫貧的家庭中按分層抽樣抽取8戶,再從這8戶中隨機抽取兩戶家庭,求這兩戶家庭的政府扶貧資金總和為10萬元的概率.
科目:高中數學 來源: 題型:
【題目】(本小題滿分16分)
已知數列{an}的前n項和為Sn,且a1=1,Sn=n2an(n∈N*).
(1)試求出S1,S2,S3,S4,并猜想Sn的表達式;
(2)用數學納法證明你的猜想,并求出an的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產某種產品的固定成本為150萬元,而每件產品的可變成本為2500元,每件產品的售價為3500元,已知該公司所生產的產品能夠全部銷售出去.
(1)分別求出總成本(萬元),單位成本
(萬元),銷售總收入
(萬元),總利潤
(萬元)關于總產量x(件)的函數解析式;
(2)由(1)所求得的函數解析式,對這個公司的經濟效益作出簡單分析.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(
為參數),曲線C2的參數方程為
(
為參數).在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α 與C1,C2 各有一個交點.當 α=0時,這兩個交點間的距離為2,當 α=
時,這兩個交點重合.
(1) 求曲線C1,C2的直角坐標方程
(2) 設當 α=時,l與C1,C2的交點分別為A1,B1,當 α=-
時,l與C1,C2的交點分別為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出以下命題:
① 雙曲線的漸近線方程為
;
② 命題“
,
”是真命題;
③ 已知線性回歸方程為,當變量
增加
個單位,其預報值平均增加
個單位;
④ 設隨機變量服從正態分布
,若
,則
;
⑤ 已知,
,
,
,依照以上各式的規律,得到一般性的等式為
,(
)
則正確命題的序號為 (寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,多面體ABCD﹣A1B1C1D1為正方體,則下面結論正確的是( )
A.A1B∥B1C
B.平面CB1D1⊥平面A1B1C1D1
C.平面CB1D1∥平面A1BD
D.異面直線AD與CB1所成的角為30°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代有著輝煌的數學研究成果.《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、……《緝古算經》等10部專著,有著十分豐富多彩的內容,是了解我國古代數學的重要文獻.這10部專著中有7部產生于魏晉南北朝時期.某中學擬從這10部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是魏晉南北朝時期專著的選法為( )
A. 45 種B. 42 種C. 28 種D. 16種
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com