【題目】設橢圓的左、右焦點分別為
,
,
,
是
上的點,
的面積最大值為
,直線
與
交于
兩點,且
(
為坐標原點)
(1)求橢圓的方程;
(2)求證:到直線
的距離為定值,并求其定值.
【答案】(1);(2)見解析,
【解析】
(1)由題意可得,解得a、b、c,進而得橢圓的方程.
(2)利用分類討論,當直線l斜率存在時,設其方程,代入橢圓方程,將轉化為
,即
,再根據韋達定理及向量數量積的坐標運算,得出關于根據點到直線的距離公式得出
(1)設橢圓C的半焦距為c,由題意可知,
當P為橢圓C的上頂點或下頂點時,的面積取得最大值
.
所以,所以
,
,
故橢圓C的標準方程為.
(2)當直線l斜率存在時,設其方程為,
由 ,整理得:
,
由,整理得:
設,
,則由韋達定理得:
,
,即
,
,
整理得,
化簡得: ,滿足
,
點O到直線
的距離為
,
當直線斜率不存在時,由對稱性可求得直線方程為,也滿足題意.
故到直線
的距離為定值,其值為
.
科目:高中數學 來源: 題型:
【題目】在棱長為的正方體
中,O是AC的中點,E是線段D1O上一點,且D1E=λEO.
(1)若λ=1,求異面直線DE與CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元件),在某地區部分營銷網點進行試點(每個試點網點只采用一種促銷活動方案),運作一年后,對比該地區上一年度的銷售情況,制作相應的等高條形圖如圖所示.
(1)請根據等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區的產品銷售價格,統計上一年度的8組售價(單位:元/件,整數)和銷量
(單位:件)
如下表所示:
售價 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請根據下列數據計算相應的相關指數,并根據計算結果,選擇合適的回歸模型進行擬合;
②根據所選回歸模型,分析售價定為多少時?利潤
可以達到最大.
52446.95 | 13142 | 122.89 | |
124650 |
(附:相關指數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數便突破60萬,其中青年學生約有50萬人.現從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統計結果用莖葉圖記錄如下:
(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數;
(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數為X,求的分布列和數學期望;
(Ⅲ)為便于聯絡,現將所有的青年學生志愿者隨機分成若干組(每組人數不少于5000),并在每組中隨機選取個人作為聯絡員,要求每組的聯絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據圖表中數據,以頻率作為概率,給出
的最小值.(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】棉花的優質率是以其纖維長度來街量的,纖維越長的棉花晶質越高.棉花的品質分類標準為:纖維長度小于等于的為粗絨棉,纖維長度在
的為細絨棉,纖維長度大于
的為長絨棉,其中纖維長度在
以上的棉花又名“軍海1號”.某采購商從新疆某一棉花基地抽測了
根棉花的纖維長度,得到數據如下圖頻率分布表所示:
纖維長度 | ||||
根數 |
(1)若將頻率作為概率, 根據以上數據,能否認為該基地的這批棉花符合“長絨棉占全部棉花的以上”的要求?
(2)用樣本估計總體, 若這批榨花共有,基地提出了兩種銷售方案給采購商參考.方案一:不分等級賣出,每千克按
元計算,方案二:對
棉花先分等級再銷售,分級后不同等級的棉花售價如下表:
纖維長度 | ||||
售價 |
從來購商的角度,請你幫他決策一下該用哪個方案.
(3)用分層抽樣的方法從長絨棉中抽取6根棉花,再從此根棉花中抽取兩根進行檢驗.求抽到的兩根棉花只有一根是“軍海1號”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現象不斷的發生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:
(1)逐份檢驗,則需要檢驗n次;
(2)混合檢驗,將其中k(且
)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為
次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p(
).
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現取其中k(且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為
,采用混合檢驗方式,樣本需要檢驗的總次數為
.
(i)試運用概率統計的知識,若,試求p關于k的函數關系式
;
(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求k的最大值.
參考數據:,
,
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國南宋數學家楊輝所著的《詳解九章算術》一書中,用圖①的數表列出了一些正整數在三角形中的一種幾何排列,俗稱“楊輝三角形”,該數表的規律是每行首尾數字均為,從第三行開始,其余的數字是它“上方”左右兩個數字之和,F將楊輝三角形中的奇數換成
,偶數換成
,得到圖②所示的由數字
和
組成的三角形數表,由上往下數,記第
行各數字的和為
,如
,則
____________
① ②
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com