設(shè)數(shù)列{an}共有n()項(xiàng),且
,對(duì)每個(gè)i (1≤i≤
,i
N),均有
.
(1)當(dāng)時(shí),寫出滿足條件的所有數(shù)列{an}(不必寫出過(guò)程);
(2)當(dāng)時(shí),求滿足條件的數(shù)列{an}的個(gè)數(shù).
(1)共有3個(gè):; 1,1,1; 1,2,1;(2)數(shù)列{an}的個(gè)數(shù)為393.
解析試題分析:(1)根據(jù)題意可得當(dāng)時(shí),有
,因?yàn)轭}中要求
,
,也就是說(shuō)
,
,這樣即可得
或
或
,故此時(shí)滿足條件的數(shù)列{an}共有3個(gè):
; 1,1,1; 1,2,1;(2)由題中要求可聯(lián)想到令bi=
(1≤i≤7),則對(duì)每個(gè)符合條件的數(shù)列{an},滿足條件:
,且bi∈
(1≤i≤7),則此時(shí)可設(shè)符合條件的數(shù)列{bn}的個(gè)數(shù)為N, bi (1≤i≤7)中有k個(gè)2;從而有k個(gè)
,7-2k個(gè)1,當(dāng)k給定時(shí),{bn}的取法有
種,故此時(shí)
.
試題解析:(1)當(dāng)時(shí),
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/99/2/1tn4v4.png" style="vertical-align:middle;" />,,即
,
,
所以或
或
.
故此時(shí)滿足條件的數(shù)列{an}共有3個(gè):; 1,1,1; 1,2,1. 3分
(2)令bi= (1≤i≤7),則對(duì)每個(gè)符合條件的數(shù)列{an},滿足條件:
,且bi∈
(1≤i≤7).
反之,由符合上述條件的7項(xiàng)數(shù)列{bn}可唯一確定一個(gè)符合條件的8項(xiàng)數(shù)列{an}. 7分
記符合條件的數(shù)列{bn}的個(gè)數(shù)為N.
顯然,bi (1≤i≤7)中有k個(gè)2;從而有k個(gè),7-2k個(gè)1.
當(dāng)k給定時(shí),{bn}的取法有種,易得k的可能值只有0,1,2,3,
故.
因此,符合條件的數(shù)列{an}的個(gè)數(shù)為393. 10分
考點(diǎn):1.數(shù)列的遞推關(guān)系;2.排列組合的應(yīng)用;3.代數(shù)式的處理
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足對(duì)任意的
,都有
且
.
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式
;
(3)設(shè)數(shù)列的前
項(xiàng)和為
,不等式
對(duì)任意的正整數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)(其中
),區(qū)間
.
(1)求區(qū)間的長(zhǎng)度(注:區(qū)間
的長(zhǎng)度定義為
);
(2)把區(qū)間的長(zhǎng)度記作數(shù)列
,令
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的首項(xiàng)
,
求數(shù)列的通項(xiàng)公式;
設(shè)的前
項(xiàng)和為
,若
的最小值為
,求
的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
各項(xiàng)均為正數(shù)的數(shù)列{an}中,設(shè),
,且
,
.
(1)設(shè),證明數(shù)列{bn}是等比數(shù)列;
(2)設(shè),求集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:
;
為數(shù)表中第
行的第
個(gè)數(shù).
(1)求第2行和第3行的通項(xiàng)公式和
;
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列;
(3)求關(guān)于
(
)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和Sn=2n2+2n,數(shù)列{bn}的前n項(xiàng)和Tn=2-bn.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=·bn,證明:當(dāng)且僅當(dāng)n≥3時(shí),cn+1<cn..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前
項(xiàng)和為
,
.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足
,其中
N*.
(Ⅰ)設(shè),求證:數(shù)列
是等差數(shù)列,并求出
的通項(xiàng)公式
;
(Ⅱ)設(shè),數(shù)列
的前
項(xiàng)和為
,是否存在正整數(shù)
,使得
對(duì)于
N*恒成立,若存在,求出
的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com