已知數(shù)列滿足
,其中
N*.
(Ⅰ)設(shè),求證:數(shù)列
是等差數(shù)列,并求出
的通項(xiàng)公式
;
(Ⅱ)設(shè),數(shù)列
的前
項(xiàng)和為
,是否存在正整數(shù)
,使得
對(duì)于
N*恒成立,若存在,求出
的最小值,若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ)詳見(jiàn)解析;(Ⅱ)3
解析試題分析:(Ⅰ)利用等差數(shù)列的定義即可證明該數(shù)列導(dǎo)數(shù)是等差數(shù)列,然后求首項(xiàng)、公差即可得出的通項(xiàng)公式;(Ⅱ)首先求得
的通項(xiàng)公式,然后根據(jù)裂項(xiàng)求和得
,根據(jù)題意得出關(guān)于
不等式解之即可.
試題解析:(I)證明,
所以數(shù)列是等差數(shù)列,
,因此
,
由得
. 8分
(II),
,
所以,
依題意要使對(duì)于
恒成立,只需
解得或
,所以
的最小值為
15分
考點(diǎn):1.等差數(shù)列;2.裂項(xiàng)求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}共有n()項(xiàng),且
,對(duì)每個(gè)i (1≤i≤
,i
N),均有
.
(1)當(dāng)時(shí),寫出滿足條件的所有數(shù)列{an}(不必寫出過(guò)程);
(2)當(dāng)時(shí),求滿足條件的數(shù)列{an}的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an} 的前n項(xiàng)和為Sn,滿足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差數(shù)列.
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an+2n}是等比數(shù)列;
(3)證明:對(duì)一切正整數(shù)n,有+
+…+
<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
2013年我國(guó)汽車擁有量已超過(guò)2億(目前只有中國(guó)和美國(guó)超過(guò)2億),為了控制汽車尾氣對(duì)環(huán)境的污染,國(guó)家鼓勵(lì)和補(bǔ)貼購(gòu)買小排量汽車的消費(fèi)者,同時(shí)在部分地區(qū)采取對(duì)新車限量上號(hào).某市采取對(duì)新車限量上號(hào)政策,已知2013年年初汽車擁有量為(
=100萬(wàn)輛),第
年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為
,該年的增長(zhǎng)量
和
與
的乘積成正比,比例系數(shù)為
其中
=200萬(wàn).
(1)證明:;
(2)用表示
;并說(shuō)明該市汽車總擁有量是否能控制在200萬(wàn)輛內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)設(shè)函數(shù)的圖像的頂點(diǎn)的縱坐標(biāo)構(gòu)成數(shù)列
,求證:
為等差數(shù)列;
(Ⅱ)設(shè)函數(shù)的圖像的頂點(diǎn)到
軸的距離構(gòu)成數(shù)列
,求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列,
,
,
.
(1)求證:為等比數(shù)列,并求出通項(xiàng)公式
;
(2)記數(shù)列 的前
項(xiàng)和為
且
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的首項(xiàng)
其中
,
令集合
.
(Ⅰ)若,寫出集合
中的所有的元素;
(Ⅱ)若,且數(shù)列
中恰好存在連續(xù)的7項(xiàng)構(gòu)成等比數(shù)列,求
的所有可能取值構(gòu)成的集合;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正項(xiàng)數(shù)列的前
項(xiàng)和為
,
是
與
的等比中項(xiàng).
(1)求證:數(shù)列是等差數(shù)列;
(2)若,且
,求數(shù)列
的通項(xiàng)公式;
(3)在(2)的條件下,若,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列滿足
.
(1)計(jì)算,
,
,
,由此猜想通項(xiàng)公式
,并用數(shù)學(xué)歸納法證明此猜想;
(2)若數(shù)列滿足
,求證:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com