日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
7.已知數列{an}的首項a1=4,當n≥2時,an-1an-4an-1+4=0,數列{bn}滿足bn=$\frac{1}{{2-{a_n}}}(n∈N{\;}^*)$
(1)求證:數列{bn}是等差數列,并求{bn}的通項公式;
(2)若cn=4bn•(nan-6),如果對任意n∈N*,都有cn+$\frac{1}{2}$t≤2t2,求實數t的取值范圍.

分析 (1)通過作差可知bn-bn-1=$\frac{{a}_{n}-{a}_{n-1}}{4-2{a}_{n}-2{a}_{n-1}+{a}_{n}{a}_{n-1}}$,結合an-1an-4an-1+4=0可知bn-bn-1=-$\frac{1}{2}$,進而利用數列{bn}是等差數列即可求出通項公式;
(2)通過(1)及bn=bn=$\frac{1}{{2-{a_n}}}(n∈N{\;}^*)$可知an=$\frac{2}{n}$+2,進而可知cn=$\frac{1}{{2}^{n}}$(2n-4),結合單調性可知-1≤cn≤$\frac{1}{4}$,將y=cn+$\frac{1}{2}$t-2t2看作是關于cn的一次函數,結合其單調遞增可知當cn=$\frac{1}{4}$時y≤0即可,進而問題轉化為解不等式$\frac{1}{4}$+$\frac{1}{2}$t-2t2≤0,計算即得結論.

解答 (1)證明:當n≥2時,bn-bn-1=$\frac{1}{2-{a}_{n}}$-$\frac{1}{2-{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n-1}}{4-2{a}_{n}-2{a}_{n-1}+{a}_{n}{a}_{n-1}}$,
由于an-1an-4an-1+4=0,
所以bn-bn-1=-$\frac{1}{2}$,即數列{bn}是等差數列,
又因為b1=$\frac{1}{2-{a}_{1}}$=-$\frac{1}{2}$,
所以bn=$-\frac{1}{2}$+(n-1)($-\frac{1}{2}$)=-$\frac{n}{2}$;
(2)由(1)及bn=bn=$\frac{1}{{2-{a_n}}}(n∈N{\;}^*)$可知an=$\frac{2}{n}$+2,
所以cn=4bn•(nan-6)=$\frac{1}{{2}^{n}}$(2n-4),
由單調性可知:-1≤cn≤$\frac{1}{4}$,
令y=cn+$\frac{1}{2}$t-2t2,則y是關于cn的一次函數,且單調遞增,
所以當cn=$\frac{1}{4}$時y≤0即可,
所以$\frac{1}{4}$+$\frac{1}{2}$t-2t2≤0,解得:t≤-$\frac{1}{4}$或t≥$\frac{1}{2}$,
故實數t的取值范圍是:(-∞,-$\frac{1}{4}$]∪[$\frac{1}{2}$,+∞).

點評 本題是一道關于數列與不等式的綜合題,考查求數列的通項及前n項和,考查運算求解能力,考查函數思想,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

10.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)與雙曲線C2:x2-y2=4有相同的右焦點F2,點P是橢圓C1與雙曲線C2在第一象限的公共點,若|PF2|=2,則橢圓C1的離心率等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.直線x+2y=m(m>0)與⊙O:x2+y2=5交于A,B兩點,若|${\overrightarrow{OA}$+$\overrightarrow{OB}}$|>2|${\overrightarrow{AB}}$|,則m的取值范圍是(  )
A.$({\sqrt{5},2\sqrt{5}})$B.$({2\sqrt{5},5})$C.$({\sqrt{5},5})$D.$({2,\sqrt{5}})$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.不超過實數x的最大整數稱為x的整數部分,記作[x].已知f(x)=cos([x]-x),給出下列結論:
①f(x)是偶函數;
②f(x)是周期函數,且最小值周期為π;
③f(x)的單調遞減區間為[k,k+1)(k∈Z);
④f(x)的值域為[cos1,1).
其中正確的個數為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.一個幾何體的三視圖如圖所示,其中俯視圖為正方形,則最長側棱(不包括底面的棱)的長度為(  )
A.2B.$\sqrt{6}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的外接球的表面積等于(  )
A.$4\sqrt{3}π$B.C.D.12π

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.B.$\frac{46}{3}$πC.18πD.$\frac{52}{3}$π

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.(1)求證:$\sqrt{8}-\sqrt{6}<\sqrt{5}-\sqrt{3}$.
(2)某同學在一次研究性學習中發現,以下五個式子的值都等于同一個常數:
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個式子中選擇一個,求出這個常數;
②根據①的計算結果,將該同學的發現推廣為三角恒等式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知不等式ax2-bx-1≥0的解是[-$\frac{1}{2}$,-$\frac{1}{3}$]
(1)求a,b的值;
(2)求不等式x2-bx-a<0的解集.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 狠狠爱www人成狠狠爱综合网 | 亚洲精品视频三区 | 亚洲精品视频免费 | 一区二区精品视频 | 三级毛片在线 | 国产欧美在线视频 | 在线播放av片 | 美女天堂 | 欧美成人激情视频 | 久久精品系列 | 日本jizz在线观看 | 国产传媒在线视频 | 久久精品播放 | 国产精品一区二区在线播放 | 中文av网站 | 午夜免费视频网站 | 一区二区三区免费看 | 欧美精品一区二区三区视频 | 日韩视频在线观看 | 欧美在线看片 | 国产小视频在线免费观看 | 久久手机在线视频 | 品久久久久久久久久96高清 | 精品久久久久久久久久久久久久久 | 神马久久久久久 | 国产免费黄视频 | 天天做天天爱天天综合网2021 | 91啪影院 | 日本一区二区成人 | 国产综合久久 | 亚洲三区在线观看 | 中文字幕 欧美 日韩 | 中文字幕国产高清 | www欧美| 中文字幕不卡av | 久久人人爽视频 | 一区二区三区自拍 | 电影午夜精品一区二区三区 | 国产视频一二区 | 特级黄一级播放 | 亚洲最新中文字幕 |