【題目】已知拋物線上一點
到焦點
的距離
.
(1)求拋物線的方程;
(2)過點引圓
的兩條切線
,切線
與拋物線
的另一交點分別為
,線段
中點的橫坐標記為
,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】十七世紀,法國數學家費馬提出猜想;“當整數時,關于
、
、
的方程
沒有正整數解”,經歷三百多年,1995年英國數學家安德魯
懷爾斯給出了證明,使它終成費馬大定理,則下面命題正確的是( )
①對任意正整數,關于
、
、
的方程
都沒有正整數解;
②當整數時,關于
、
、
的方程
至少存在一組正整數解;
③當正整數時,關于
、
、
的方程
至少存在一組正整數解;
④若關于、
、
的方程
至少存在一組正整數解,則正整數
;
A.①②/span>B.①③C.②④D.③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球為一次試驗,直到摸出的球中有紅球(不放回),則試驗結束.
(1)求第一次試驗恰摸到一個紅球和一個白球概率;
(2)記試驗次數為,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保障全國第四次經濟普查順利進行,國家統計局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點地區,然后再逐級確定普查區域,直到基層的普查小區.在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記. 由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗. 在某普查小區,共有 50 家企事業單位,150 家個體經營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業單位 | 40 | 10 | 50 |
個體經營戶 | 100 | 50 | 150 |
合計 | 140 | 60 | 200 |
(1)寫出選擇 5 個國家綜合試點地區采用的抽樣方法;
(2)根據列聯表判斷是否有的把握認為“此普查小區的入戶登記是否順利與普查對象的類別有關”;
(3)以頻率作為概率, 某普查小組從該小區隨機選擇 1 家企事業單位,3 家個體經營戶作為普查對象,入戶登記順利的對象數記為, 寫出
的分布列,并求
的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2014年聯想集團以28億收購摩托羅拉移動公司,并計劃投資30億元來發展改品牌,2014年摩托羅拉手機的銷售量為100萬部,據專家預測,從2015年起,摩托羅拉手機的銷售量每年比上上一年增加100萬部,每年的銷售利潤比上一年減少10%,已知2014年銷售利潤平均每部為300元.
(1)若2014年看作第一年,第n年的銷售利潤為多少?
(2)到2020年年底,中國聯想集團能否通過摩托羅拉手機實現盈利?(即銷售利潤超過總投資)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】方程的曲線即為函數
的圖象,對于函數
,有如下結論:①
在
上單調遞減;②函數
存在零點;③函數
的值域是R;④若函數
和
的圖象關于原點對稱,則函數
的圖象就是
確定的曲線
其中所有正確的命題序號是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)若曲線在
處的切線與直線
平行,求實數
的值;
(Ⅱ)若函數在定義域上為增函數,求實數
的取值范圍;
(Ⅲ)若有兩個極值點
,且
,
,若不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校閱覽室的一個書架上有6本不同的課外書,有5個學生想閱讀這6本書,在同一時間內他們到這個書架上取書.
(1)求每個學生只取1本書的不同取法種數;
(2)求每個學生最少取1本書,最多取2本書的不同取法種數;
(3)求恰有1個學生沒取到書的不同取法種數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線
的極坐標方程為
,曲線
的極坐標方程為
,
(l)設為參數,若
,求直線
的參數方程;
(2)已知直線與曲線
交于
,
設
,且
,求實數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com