日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
12.設函數f(x)=x2+ax-lnx,其中實數a為常數.
(1)若a=2,求曲線y=f(x)在點P(1,f(1))處的切線方程;
(2)若函數g(x)=$\frac{f(x)}{{e}^{x}}$在區間(0,1]上是減函數,其中e為自然對數的底數,求a的取值范圍.

分析 (1)欲求在點(1,f(1))處的切線方程,只須求出其斜率的值即可,故先利用導數求出在x=1處的導函數值,再結合導數的幾何意義即可求出切線的斜率.從而問題解決.
(2)先求導,再構造函數設h(x)=-x2+(2-a)x+a-$\frac{1}{x}$+lnx 由h'(x)在(0,1]上是減函數,可得h'(x)≥h'(1)=2-a,通過研究2-a的正負可判斷h(x)的單調性,進而可得函數F(x)的單調性,可求參數的取值范圍

解答 解:(1)a=2,y=f(x)=x2+2x-lnx,
∴f′(x)=2x+2-$\frac{1}{x}$,
∴f′(1)=2+2-1=3,f(1)=1+2-0=3,
∴曲線在點(1,f(1))處的切線方程為:y-3=3×(x-1),即y=3x.
(2)g(x)=$\frac{f(x)}{{e}^{x}}$,f(x)=x2+ax-lnx,
∴g′(x)=$\frac{-{x}^{2}+(2-a)x+a-\frac{1}{x}+lnx}{{e}^{x}}$,
設h(x)=-x2+(2-a)x+a-$\frac{1}{x}$+lnx,
則h′(x)=-2x+$\frac{1}{{x}^{2}}$+$\frac{1}{x}$+2-a,
易知h′(x)在(0,+∞)上是減函數,
從而h′(x)≥h′(1)=2-a,
①當2-a≥0時,即a≤2時,h′(x)≥0,h(x)在(0,1)上是增函數
∵h(1)=0,
∴h(x)≤0在(0,1]上恒成立,
即g′(x)≤0區間(0,1]上是單調遞減函數,
∴a≤2滿足題意,
②當2-a<0時,即a>2時,設函數h′(x)的唯一零點為x0,則h(x)在(0,x0)上單調遞增,在(x0,1)單調遞減,
又∵h(1)=0,
∴h(x0)>0,
又∵h(e-a)<0,
∴h(x)在(0,1)內有唯一一個零點m,
當x∈(0,m)時,h(x)<0,
當x∈(m,1)時,h(x)>0,從而f(x)在(0,m)上單調遞減,在(m,1)上單調遞增,與在區間(0,1]上是減函數矛盾,
∴a>2不合題意,
綜合所述a的取值范圍為(-∞,2].

點評 考查學生利用導數研究函數的單調能力,函數單調性的判定,以及導數的運算,試題具有一定的綜合性,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

5.已知函數f(x)=lnx-mx(m∈R).
(Ⅰ)若曲線y=f(x)過點P(1,-1),求曲線y=f(x)在點P處的切線方程;
(Ⅱ)若f(x)≤0對x∈(0,+∞)恒成立,求實數m的取值范圍;
(Ⅲ)求函數f(x)在區間[1,e]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.如圖,矩形CDEF所在的平面與矩形ABCD所在的平面垂直,AD=$\sqrt{2}$,DE=$\sqrt{3}$,AB=4,EG=$\frac{1}{4}$EF,點M在線段GF上(包括兩端點),點
N在線段AB上,且$\overrightarrow{GM}$=$\overrightarrow{AN}$,則二面角M-DN-C的平面角的取值范圍為(  )
A.[30°,45°]B.[45°,60°]C.[30°,90°)D.[60°,90°)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=3,E為B1C1的中點,F在CC1上,且C1F=1,G在AA1上,且AG=2.
(1)證明:DG∥平面A1EF;
(2)設平面A1EF與DD1交于點H,求線段DH的長,并求出直線BH與截面A1EFH所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.設x,y,z∈R,若x+2y+z=4.
(1)求x2+y2+z2的最小值;
(2)求x2+(y-1)2+z2的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.在平面直角坐標系xOy中,直線l:$\left\{{\begin{array}{l}{x=m+t}\\{y=2+\sqrt{3}t}\end{array}(t為參數)}\right.$,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的方程是$ρ=\frac{8cosθ}{1-cos2θ}$;
(Ⅰ)若m=0,在曲線C上確定一點M,使得它到直線l的距離最小,并求出最小值;
(Ⅱ)設P(m,2)且m>1,直線l與曲線C相交于A,B兩點,$\frac{{|{|{PA}|-|{PB}|}|}}{{|{PA}|•|{PB}|}}$=$\frac{{\sqrt{3}-1}}{2}$,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.若A,B,C是函數f(x)=ex+x圖象上橫坐標成等差數列的三個點,給出以下判斷:①△ABC可能是直角三角形;②△ABC一定是鈍角三角形;③△ABC可能是等腰三角形;④△ABC一定不是等腰三角形.其中,正確的判斷是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知函數f(x)對?x∈R都有f(x)=f(4-x),且其導函數f′(x)滿足當x≠2時,(x-2)f′(x)>0,則當2<a<4時,有(  )
A.f(2a)<f(2)<f(log2a)B.f(2)<f(2a)<f(log2a)C.f(log2a)<f(2a)<f(2)D.f(2)<f(log2a)<f(2a

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.在平面直角坐標系xOy中,已知點A(2,0),直線l:x+y-5=0,點B(x,y)是圓C:x2+2x+y2-1=0上的動點,AD⊥l,BE⊥l,垂足分別為D,E,則線段DE的最大值是(  )
A.$\sqrt{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$2\sqrt{2}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久伊人av | 日本高清视频网站www | 一级网站在线观看 | 91麻豆精品久久久久蜜臀 | 中文字幕一区二区三区四区 | 中文字幕在线视频免费观看 | 午夜私人影院在线观看 | 中国特黄毛片 | 免费国产在线视频 | 华丽的挑战在线观看 | 久久av一区二区三区 | av激情在线| 羞羞视频在线观看视频 | 精品国产乱码久久久久久闺蜜 | 97人人精品 | 久久亚 | 黑人巨大精品欧美一区二区小视频 | 国产污视频在线 | 免费的黄色影片 | 中文久久 | 一区二区精品在线观看 | 最近免费中文字幕大全免费版视频 | 免费中文字幕日韩欧美 | 中文字幕在线免费 | 亚洲国产免费 | 成人影院欧美黄色 | 国产成人精品午夜在线播放 | 高清一区二区三区视频 | 中文字幕在线第一页 | 国产第3页 | 精品91在线| 欧美成人精品在线观看 | 国产精品一级视频 | 精品国产乱码久久久久久丨区2区 | www四虎com| 日韩福利在线观看 | 国产精品视屏 | 久久午夜视频 | 红色av社区 | 久久精品成人欧美大片 | 国产无遮挡呻吟吸乳视频 |